Une courbe exp-algébrique est une surface de Riemann munie de classes d’équivalence de germes de fonctions méromorphes modulo les germes de fonctions holomorphes , avec des pôles d’ordre aux points . Cette donnée détermine un espace de fonctions (respectivement, un espace de -formes ) holomorphes sur la surface épointée avec des singularités exponentielles aux points de type , i.e., au voisinage du point toute est de la forme pour un germe de fonction méromorphe (respectivement toute forme est de la forme pour un germe de -forme méromorphe .
Pour toute la complétion de par rapport à la métrique plate donne un espace obtenu en ajoutant un ensemble fini de points. Il est connu que l’intégration le long des courbes fournit un accouplement non dégénéré sur l’homologie relative où le groupe de cohomologie de de Rham est défini par .
Il existe un fibré en droites de degré zéro associé à toute courbe exp-algébrique, avec un isomorphisme naturel entre et l’espace des -formes méromorphes à valeurs dans , holomorphes sur et tel que s’envoie sur un sous-espace . Nous montrons que la courbe exp-algébrique est déterminée de façon univoque par la paire .
An exp-algebraic curve consists of a compact Riemann surface together with equivalence classes of germs of meromorphic functions modulo germs of holomorphic functions, , with poles of orders at points . This data determines a space of functions (respectively, a space of -forms ) holomorphic on the punctured surface with exponential singularities at the points of types , i.e., near any is of the form for some germ of meromorphic function (respectively, any is of the form for some germ of meromorphic -form).
For any the completion of with respect to the flat metric gives a space obtained by adding a finite set of points, and it is known that integration along curves produces a nondegenerate pairing of the relative homology with the de Rham cohomology group defined by .
There is a degree zero line bundle associated to an exp-algebraic curve, with a natural isomorphism between and the space of meromorphic -valued -forms which are holomorphic on , so that maps to a subspace . We show that the exp-algebraic curve is determined uniquely by the pair .
Accepté le :
Publié le :
Indranil Biswas 1 ; Kingshook Biswas 2
@article{AFST_2020_6_29_2_357_0, author = {Indranil Biswas and Kingshook Biswas}, title = {A {Torelli} type theorem for exp-algebraic curves}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {357--370}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {2}, year = {2020}, doi = {10.5802/afst.1634}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1634/} }
TY - JOUR AU - Indranil Biswas AU - Kingshook Biswas TI - A Torelli type theorem for exp-algebraic curves JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 357 EP - 370 VL - 29 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1634/ DO - 10.5802/afst.1634 LA - en ID - AFST_2020_6_29_2_357_0 ER -
%0 Journal Article %A Indranil Biswas %A Kingshook Biswas %T A Torelli type theorem for exp-algebraic curves %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 357-370 %V 29 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1634/ %R 10.5802/afst.1634 %G en %F AFST_2020_6_29_2_357_0
Indranil Biswas; Kingshook Biswas. A Torelli type theorem for exp-algebraic curves. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 2, pp. 357-370. doi : 10.5802/afst.1634. https://afst.centre-mersenne.org/articles/10.5802/afst.1634/
[1] Continuous analogues of orthogonal polynomials on a system of intervals, Dokl. Akad. Nauk SSSR, Volume 141 (1961), pp. 263-266 | MR
[2] Note on the foregoing paper “commutative ordinary differential operators” by J. L. Burchnall and T. W. Chaundy, Proc. Royal Soc. London, Volume A118 (1928), pp. 584-593 | Zbl
[3] Algebraic deRham cohomology of log-riemann surfaces of finite type (2016) (https://arxiv.org/abs/1602.08219)
[4] Uniformization of higher genus finite type log-riemann surfaces (2013) (https://arxiv.org/abs/1305.2339)
[5] Log-Riemann surfaces, Caratheodory convergence and Euler’s formula, Geometry, groups and dynamics (Contemporary Mathematics), Volume 639, American Mathematical Society, 2015, pp. 197-203 | MR | Zbl
[6] Log-Riemann surfaces, Carathéodory convergence and Euler’s formula, Geometry, groups and dynamics. ICTS program: groups, geometry and dynamics, Almora, India, December 3–16, 2012 (Contemporary Mathematics), Volume 639, American Mathematical Society, 2015, pp. 197-203 | Zbl
[7] Uniformization of simply connected finite type log-Riemann surfaces, Geometry, groups and dynamics (Contemporary Mathematics), Volume 639, American Mathematical Society, 2015, pp. 205-216 | MR | Zbl
[8] Construction of certain function fields associated with a compact Riemann surface, Am. J. Math., Volume 106 (1984) no. 6, pp. 1423-1450 | MR | Zbl
[9] On ramification divisors of functions in a punctured compact Riemann surface, Publ. Mat., Barc., Volume 33 (1989) no. 1, pp. 163-171 | DOI | MR | Zbl
[10] On the immersions between certain function fields on punctured compact Riemann surfaces, Arch. Math., Volume 54 (1990) no. 3, pp. 304-306 | MR | Zbl
[11] Theta functions and non-linear equations, Usp. Mat. Nauk, Volume 36 (1981) no. 6, pp. 11-80 | Zbl
[12] Integrable systems. I, Current problems in mathematics. Fundamental directions, Vol. 4 (Itogi Nauki i Tekhniki), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1985, p. 179-284, 291 | Zbl
[13] The uniform approximation of continuous functions on compact riemann surfaces, Izv. Vyssh. Uchebn. Zaved., Mat., Volume 5 (1960), pp. 43-51 | MR | Zbl
[14] An algebraic-geometrical construction of the zakharov-shabat equation and their periodic solutions, Dokl. Akad. Nauk SSSR, Volume 227 (1976), pp. 291-294
[15] Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl., Volume 11 (1977) no. 1, pp. 12-26 | DOI | MR | Zbl
[16] Methods of algebraic geometry in the theory of nonlinear equations, Usp. Mat. Nauk, Volume 32 (1977) no. 6, pp. 185-213 | MR | Zbl
[17] Holomorphic bundles over algebraic curves and non-linear equations, Usp. Mat. Nauk, Volume 35 (1980) no. 6, pp. 47-68
[18] Explicit representation of structurally finite entire functions, Proc. Japan Acad., Ser. A, Volume 77 (2001) no. 4, pp. 68-70 | DOI | MR | Zbl
[19] Synthetic deformation space of an entire function, Value distribution theory and complex dynamics (Hong Kong, 2000) (Contemporary Mathematics), Volume 303, American Mathematical Society, 2002, pp. 107-136 | DOI | MR | Zbl
Cité par Sources :