Nous donnons une preuve simple du caractère indéterminé sur la demi-droite de la suite de moments entiers pour à l’aide de la condition de Lin. Sous une hypothèse d’auto-décomposabilité logarithmique, la méthode s’étend à des suites de puissances de moments entiers définis comme la factorielle croissante d’une fonction de Bernstein donnée, et plus généralement à d’autres suites infiniment divisibles de moments entiers. Nous donnons aussi une preuve très courte du caractère infiniment divisible de toutes les suites de moments entiers récemment étudiées dans [16] et en particulier de la suite de Fuss–Catalan.
We give a simple proof of the moment-indeterminacy on the half-line of the sequence for using Lin’s condition. Under a logarithmic self-decomposability assumption, the method conveys to power moment sequences defined as the rising factorials of a given Bernstein function, and to more general infinitely divisible moment sequences. We also provide a very short proof of the infinite divisibility of all the integer moment sequences recently investigated in [16], including Fuss–Catalan’s.
Accepté le :
Publié le :
Mots clés : Bernstein function, Fuss–Catalan number, Moment problem, Moment sequence, Remainder
Thomas Simon 1
@article{AFST_2020_6_29_3_577_0, author = {Thomas Simon}, title = {Moment problems related to {Bernstein} functions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {577--594}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {3}, year = {2020}, doi = {10.5802/afst.1640}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1640/} }
TY - JOUR AU - Thomas Simon TI - Moment problems related to Bernstein functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 577 EP - 594 VL - 29 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1640/ DO - 10.5802/afst.1640 LA - en ID - AFST_2020_6_29_3_577_0 ER -
%0 Journal Article %A Thomas Simon %T Moment problems related to Bernstein functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 577-594 %V 29 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1640/ %R 10.5802/afst.1640 %G en %F AFST_2020_6_29_3_577_0
Thomas Simon. Moment problems related to Bernstein functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 577-594. doi : 10.5802/afst.1640. https://afst.centre-mersenne.org/articles/10.5802/afst.1640/
[1] On exponential functionals, harmonic potential measures and undershoots of subordinators, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 11 (2014) no. 1, pp. 711-735 | MR | Zbl
[2] On powers of Stieltjes moment sequences. I, J. Theor. Probab., Volume 18 (2005) no. 4, pp. 871-889 | DOI | MR | Zbl
[3] A two-parameter extension of Urbanik’s product convolution semigroup, Probab. Math. Stat., Volume 39 (2019) no. 2, pp. 441-458 | DOI | MR | Zbl
[4] Asymptotic behaviour of the Urbanik semigroup, J. Approx. Theory, Volume 195 (2015), pp. 109-121 | DOI | MR | Zbl
[5] On subordinators, self-similar Markov processes and some factorizations of the exponential variable, Electron. Commun. Probab., Volume 6 (2001), pp. 95-106 | DOI | MR | Zbl
[6] Generalized gamma convolutions and related classes of distributions and densities, Lecture Notes in Statistics, 76, Springer, 1992, viii+173 pages | MR | Zbl
[7] On the infinite divisibility of inverse beta distributions, Bernoulli, Volume 21 (2015) no. 4, pp. 2552-2568 | DOI | MR | Zbl
[8] A proof of Bondesson’s conjecture on stable densities, Ark. Mat., Volume 54 (2016) no. 1, pp. 31-38 | DOI | MR | Zbl
[9] Some asymptotic properties of the local time of the uniform empirical process, Bernoulli, Volume 5 (1999) no. 6, pp. 1035-1058 | DOI | MR | Zbl
[10] Higher transcendental functions. Vols. I, McGraw-Hill, 1953, xxvi+302 pages | Zbl
[11] On the Mellin transforms of the perpetuity and the remainder variables associated to a subordinator, Bernoulli, Volume 19 (2013) no. 4, pp. 1350-1377 | DOI | MR | Zbl
[12] Density solutions to a class of integro-differential equations, J. Math. Anal. Appl., Volume 458 (2018) no. 1, pp. 134-152 | DOI | MR | Zbl
[13] Completely monotonic gamma ratio and infinitely divisible -function of Fox, Comput. Methods Funct. Theory, Volume 16 (2016) no. 1, pp. 135-153 | DOI | MR | Zbl
[14] On the law of homogeneous stable functionals, ESAIM, Probab. Stat., Volume 23 (2019), pp. 82-111 | DOI | MR | Zbl
[15] Recent developments on the moment problem, J. Stat. Distrib. Appl., Volume 4 (2017), 5, 17 pages | Zbl
[16] On powers of the Catalan number sequence, Discrete Math., Volume 342 (2019) no. 7, pp. 2139-2147 | DOI | MR | Zbl
[17] Moment determinacy of powers and products of nonnegative random variables, J. Theor. Probab., Volume 28 (2015) no. 4, pp. 1337-1353 | MR | Zbl
[18] Probability distributions with binomial moments, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 17 (2014) no. 2, 1450014, 32 pages | MR | Zbl
[19] Densities of the Raney distributions, Doc. Math., Volume 18 (2013), pp. 1573-1596 | MR | Zbl
[20] Theory of Barnes beta distributions, Electron. Commun. Probab., Volume 18 (2013), p. 16 | MR | Zbl
[21] Remarks on converse Carleman and Kreĭn criteria for the classical moment problem, J. Aust. Math. Soc., Volume 71 (2001) no. 1, pp. 81-104 | DOI | Zbl
[22] On generalized stable and related laws, J. Math. Anal. Appl., Volume 411 (2014) no. 1, pp. 201-222 | DOI | MR | Zbl
[23] The log-Lévy moment problem via Berg–Urbanik semigroups, Stud. Math., Volume 253 (2020) no. 3, pp. 219-257 | DOI | Zbl
[24] On distribution functions of class , Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 43 (1978) no. 4, pp. 273-308 | DOI | MR | Zbl
[25] Bernstein functions. Theory and applications, De Gruyter Studies in Mathematics, 37, Walter de Gruyter, 2010, xii+313 pages | Zbl
[26] Krein condition in probabilistic moment problems, Bernoulli, Volume 6 (2000) no. 5, pp. 939-949 | DOI | MR | Zbl
[27] Temporal change in distributional properties of Lévy processes, Lévy processes, Birkhäuser, 2001, pp. 89-107 | DOI | MR | Zbl
Cité par Sources :