Moment problems related to Bernstein functions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 577-594.

Nous donnons une preuve simple du caractère indéterminé sur la demi-droite de la suite de moments entiers (n!) t pour t>2, à l’aide de la condition de Lin. Sous une hypothèse d’auto-décomposabilité logarithmique, la méthode s’étend à des suites de puissances de moments entiers définis comme la factorielle croissante d’une fonction de Bernstein donnée, et plus généralement à d’autres suites infiniment divisibles de moments entiers. Nous donnons aussi une preuve très courte du caractère infiniment divisible de toutes les suites de moments entiers récemment étudiées dans [16] et en particulier de la suite de Fuss–Catalan.

We give a simple proof of the moment-indeterminacy on the half-line of the sequence (n!) t for t>2, using Lin’s condition. Under a logarithmic self-decomposability assumption, the method conveys to power moment sequences defined as the rising factorials of a given Bernstein function, and to more general infinitely divisible moment sequences. We also provide a very short proof of the infinite divisibility of all the integer moment sequences recently investigated in [16], including Fuss–Catalan’s.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1640
Classification : 44A60, 60E05, 60G51
Mots clés : Bernstein function, Fuss–Catalan number, Moment problem, Moment sequence, Remainder

Thomas Simon 1

1 Laboratoire Paul Painlevé, Université de Lille, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2020_6_29_3_577_0,
     author = {Thomas Simon},
     title = {Moment problems related to {Bernstein} functions},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {577--594},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {3},
     year = {2020},
     doi = {10.5802/afst.1640},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1640/}
}
TY  - JOUR
AU  - Thomas Simon
TI  - Moment problems related to Bernstein functions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 577
EP  - 594
VL  - 29
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1640/
DO  - 10.5802/afst.1640
LA  - en
ID  - AFST_2020_6_29_3_577_0
ER  - 
%0 Journal Article
%A Thomas Simon
%T Moment problems related to Bernstein functions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 577-594
%V 29
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1640/
%R 10.5802/afst.1640
%G en
%F AFST_2020_6_29_3_577_0
Thomas Simon. Moment problems related to Bernstein functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 577-594. doi : 10.5802/afst.1640. https://afst.centre-mersenne.org/articles/10.5802/afst.1640/

[1] Larbi Alili; Wissem Jedidi; Víctor Rivero On exponential functionals, harmonic potential measures and undershoots of subordinators, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 11 (2014) no. 1, pp. 711-735 | MR | Zbl

[2] Christian Berg On powers of Stieltjes moment sequences. I, J. Theor. Probab., Volume 18 (2005) no. 4, pp. 871-889 | DOI | MR | Zbl

[3] Christian Berg A two-parameter extension of Urbanik’s product convolution semigroup, Probab. Math. Stat., Volume 39 (2019) no. 2, pp. 441-458 | DOI | MR | Zbl

[4] Christian Berg; José Luis López Asymptotic behaviour of the Urbanik semigroup, J. Approx. Theory, Volume 195 (2015), pp. 109-121 | DOI | MR | Zbl

[5] Jean Bertoin; Marc Yor On subordinators, self-similar Markov processes and some factorizations of the exponential variable, Electron. Commun. Probab., Volume 6 (2001), pp. 95-106 | DOI | MR | Zbl

[6] Lennart Bondesson Generalized gamma convolutions and related classes of distributions and densities, Lecture Notes in Statistics, 76, Springer, 1992, viii+173 pages | MR | Zbl

[7] Pierre Bosch; Thomas Simon On the infinite divisibility of inverse beta distributions, Bernoulli, Volume 21 (2015) no. 4, pp. 2552-2568 | DOI | MR | Zbl

[8] Pierre Bosch; Thomas Simon A proof of Bondesson’s conjecture on stable densities, Ark. Mat., Volume 54 (2016) no. 1, pp. 31-38 | DOI | MR | Zbl

[9] Miklós Csörgö; Zhan Shi; Marc Yor Some asymptotic properties of the local time of the uniform empirical process, Bernoulli, Volume 5 (1999) no. 6, pp. 1035-1058 | DOI | MR | Zbl

[10] Arthur Erdélyi; Wilhelm Magnus; Fritz Oberhettinger; Francesco G. Tricomi Higher transcendental functions. Vols. I, McGraw-Hill, 1953, xxvi+302 pages | Zbl

[11] Francis Hirsch; Marc Yor On the Mellin transforms of the perpetuity and the remainder variables associated to a subordinator, Bernoulli, Volume 19 (2013) no. 4, pp. 1350-1377 | DOI | MR | Zbl

[12] Wissem Jedidi; Thomas Simon; Min Wang Density solutions to a class of integro-differential equations, J. Math. Anal. Appl., Volume 458 (2018) no. 1, pp. 134-152 | DOI | MR | Zbl

[13] Dmitriĭ. B. Karp; Elena G. Prilepkina Completely monotonic gamma ratio and infinitely divisible H-function of Fox, Comput. Methods Funct. Theory, Volume 16 (2016) no. 1, pp. 135-153 | DOI | MR | Zbl

[14] Julien Letemplier; Thomas Simon On the law of homogeneous stable functionals, ESAIM, Probab. Stat., Volume 23 (2019), pp. 82-111 | DOI | MR | Zbl

[15] Gwo Dong Lin Recent developments on the moment problem, J. Stat. Distrib. Appl., Volume 4 (2017), 5, 17 pages | Zbl

[16] Gwo Dong Lin On powers of the Catalan number sequence, Discrete Math., Volume 342 (2019) no. 7, pp. 2139-2147 | DOI | MR | Zbl

[17] Gwo Dong Lin; Jordan Stoyanov Moment determinacy of powers and products of nonnegative random variables, J. Theor. Probab., Volume 28 (2015) no. 4, pp. 1337-1353 | MR | Zbl

[18] Wojciech Młotkowski; Karol A. Penson Probability distributions with binomial moments, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 17 (2014) no. 2, 1450014, 32 pages | MR | Zbl

[19] Wojciech Młotkowski; Karol A. Penson; Karol Zyczkowski Densities of the Raney distributions, Doc. Math., Volume 18 (2013), pp. 1573-1596 | MR | Zbl

[20] Dmitry Ostrovsky Theory of Barnes beta distributions, Electron. Commun. Probab., Volume 18 (2013), p. 16 | MR | Zbl

[21] Anthony G. Pakes Remarks on converse Carleman and Kreĭn criteria for the classical moment problem, J. Aust. Math. Soc., Volume 71 (2001) no. 1, pp. 81-104 | DOI | Zbl

[22] Anthony G. Pakes On generalized stable and related laws, J. Math. Anal. Appl., Volume 411 (2014) no. 1, pp. 201-222 | DOI | MR | Zbl

[23] Pierre Patie; Aditya Vaidyanathan The log-Lévy moment problem via Berg–Urbanik semigroups, Stud. Math., Volume 253 (2020) no. 3, pp. 219-257 | DOI | Zbl

[24] Ken Sato; Makoto Yamazato On distribution functions of class L, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 43 (1978) no. 4, pp. 273-308 | DOI | MR | Zbl

[25] René L. Schilling; Renming Song; Zoran Vondraček Bernstein functions. Theory and applications, De Gruyter Studies in Mathematics, 37, Walter de Gruyter, 2010, xii+313 pages | Zbl

[26] Jordan Stoyanov Krein condition in probabilistic moment problems, Bernoulli, Volume 6 (2000) no. 5, pp. 939-949 | DOI | MR | Zbl

[27] Toshiro Watanabe Temporal change in distributional properties of Lévy processes, Lévy processes, Birkhäuser, 2001, pp. 89-107 | DOI | MR | Zbl

Cité par Sources :