Revisiting Manin’s theorem of the kernel
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 5, pp. 1301-1318.

Dans la première partie de ce texte, on établit au moyen de l’application de Manin un énoncé de finitude reliant les sections d’un schéma elliptique et les solutions des équations de Painlevé VI. Le reste de l’article concerne le théorème du noyau de Manin dans le cadre d’un schéma abélien sur une courbe, et passe en revue les divers énoncés connus sous cette appellation.

In the first part of the paper, we use Manin’s map to establish a finiteness result linking rational sections of an elliptic scheme and solutions of Painlevé VI equations. The rest of the paper concerns abelian schemes over curves, and presents a survey of the various statements encompassed by Manin’s theorem of the kernel.

Publié le :
DOI : 10.5802/afst.1662
Classification : 14K05, 32G20, 11G10, 12H05, 34M55
Mots clés : abelian varieties, Manin maps, Gauss–Manin connections, Mumford–Tate groups, Painlevé VI equations

Daniel Bertrand 1

1 Sorbonne Université & UMR 7586 du CNRS, Institut de Mathématiques de Jussieu-PRG, Case 247, 75 252 Paris Cédex 05, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2020_6_29_5_1301_0,
     author = {Daniel Bertrand},
     title = {Revisiting {Manin{\textquoteright}s} theorem of the kernel},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1301--1318},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {5},
     year = {2020},
     doi = {10.5802/afst.1662},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1662/}
}
TY  - JOUR
AU  - Daniel Bertrand
TI  - Revisiting Manin’s theorem of the kernel
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 1301
EP  - 1318
VL  - 29
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1662/
DO  - 10.5802/afst.1662
LA  - en
ID  - AFST_2020_6_29_5_1301_0
ER  - 
%0 Journal Article
%A Daniel Bertrand
%T Revisiting Manin’s theorem of the kernel
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 1301-1318
%V 29
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1662/
%R 10.5802/afst.1662
%G en
%F AFST_2020_6_29_5_1301_0
Daniel Bertrand. Revisiting Manin’s theorem of the kernel. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 5, pp. 1301-1318. doi : 10.5802/afst.1662. https://afst.centre-mersenne.org/articles/10.5802/afst.1662/

[1] Yves André Mumford–Tate groups of mixed Hodge structures and the theorem of the fixed part, Compos. Math., Volume 82 (1992) no. 1, pp. 1-24 | Numdam | MR | Zbl

[2] Yves André Groupes de Galois motiviques et périodes, Séminaire Bourbaki. Volume 2015/2016 (Astérisque), Volume 390, Société Mathématique de France, 2015, pp. 1-26 (exposé n° 1104) | Zbl

[3] Yves André; Pietro Corvaja; Umberto Zannier The Betti map associated to a section of an abelian scheme (with an appendix by Z. Gao) (2018) (https://arxiv.org/abs/1802.03204)

[4] Daniel Bertrand Extensions de D-modules et groupes de Galois différentiels, p-adic analysis (Lecture Notes in Mathematics), Volume 1454, Springer, 1990, pp. 125-141 | DOI | Zbl

[5] Daniel Bertrand Manin’s theorem of the kernel : a remark on a paper of C-L. Chai (2008) (unpublished, webusers.imj-prg.fr/~daniel.bertrand/)

[6] Daniel Bertrand Galois descent in Galois theories, Arithmetic and Galois theories of differential equations (Séminaires et Congrès), Volume 23, Société Mathématique de France, 2011, pp. 1-24 | MR | Zbl

[7] Daniel Bertrand; Anand Pillay A Lindemann–Weierstrass Theorem for semiabelian varieties over function fields, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 491-533 | DOI | Zbl

[8] Daniel Bertrand; Anand Pillay Galois theory, functional Lindemann-Weierstrass and Manin maps, Pac. J. Math., Volume 281 (2016) no. 1, pp. 51-82 | DOI | MR | Zbl

[9] Alexandru Buium Differential algebra and diophantine geometry, Actualités Mathématiques, Hermann, 1994 | Zbl

[10] Guy Casale The Galois groupoid of Picard–Painlevé VI equation, RIMS Kôkyûroku Bessatsu, Volume B2 (2007), pp. 15-20 | MR | Zbl

[11] Ching-Li Chai Correction to [12] (available on www.math.upenn.edu/~chai/papers.html)

[12] Ching-Li Chai A note on Manin’s theorem of the kernel, Am. J. Math., Volume 113 (1991) no. 3, pp. 387-389 | DOI | MR | Zbl

[13] Robert F. Coleman Manin’s proof of the Mordell conjecture over function fields, Enseign. Math., Volume 36 (1990) no. 3-4, pp. 393-427 | MR | Zbl

[14] Pierre Deligne Théorie de Hodge II, Publ. Math., Inst. Hautes Étud. Sci., Volume 40 (1971), pp. 5-58 | DOI | Numdam | Zbl

[15] Pierre Deligne Théorie de Hodge III, Publ. Math., Inst. Hautes Étud. Sci., Volume 44 (1974), pp. 5-77 | DOI | Numdam | Zbl

[16] Gerd Faltings Arakelov theorem for abelian varieties, Invent. Math., Volume 73 (1983), pp. 337-347 | DOI | MR

[17] Charlotte Hardouin Unipotent radicals of Tannakian Galois groups in positive characteristic, Arithmetic and Galois theories of differential equations (Séminaires et Congrès), Volume 23, Société Mathématique de France, 2011, pp. 283-299 | MR | Zbl

[18] Yu. I. Manin Rational points of algebraic curves over functional fields, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 27 (1963) no. 6, pp. 1395-1440 translation in Am. Math. Soc., Transl. 50 (1966), p. 189–234 | Zbl

[19] Yu. I. Manin Letter to the editor, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 53 (1989) no. 2, pp. 447-448 translation in Math. USSR, Izv. 34 (1990), n° 2, p. 465-466 | Zbl

[20] Yu. I. Manin Sixth Painlevé equation, universal elliptic curve, and mirror of 2 , Am. Math. Soc., Transl., Volume 186 (1998) no. 39, pp. 131-151 | Zbl

[21] Hiroshi Umemura Galois theory and Painlevé equations, Théories asymptotiques et équations de Painlevé (Séminaires et Congrès), Volume 14, Société Mathématique de France, 2006, pp. 299-339 | MR | Zbl

Cité par Sources :