On the definition of a solution to a rough differential equation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 463-478.

There are several ways of defining what it means for a path to solve a rough differential equation. The most commonly used notion is due to Davie; it involves a Taylor expansion property that only makes sense a priori in a given coordinate system. Bailleul’s definition [4] is coordinate independent. Cass and Weidner [9] recently proved that the two definitions are actually equivalent, using deep algebraic insights on rough paths. We provide in this note an algebraic-free elementary short proof of this fact.

Différentes notions de solution d’une équations différentielle rugueuses sont disponibles dans la littérature. La notion la plus utilisée est due à Davie ; elle met en jeu un développement de Taylor, dont le sens est lié à un choix de coordonnées. La définission donnée par Bailleul dans [4] ne dépend pas d’un choix de coordonnées. Cass et Weidner [9] ont récemment démontré que les deux définitions sont en fait équivalentes, en s’appuyant sur des résultats algébriques élaborés. On donne dans cette note une démonstration courte et élémentaire de ce fait.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1681

Ismael Bailleul 1

1 Institut de Recherche Mathematiques de Rennes, 263 Avenue du General Leclerc, 35042 Rennes (France)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_3_463_0,
     author = {Ismael Bailleul},
     title = {On the definition of a solution to a rough differential equation},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {463--478},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {3},
     year = {2021},
     doi = {10.5802/afst.1681},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1681/}
}
TY  - JOUR
AU  - Ismael Bailleul
TI  - On the definition of a solution to a rough differential equation
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 463
EP  - 478
VL  - 30
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1681/
DO  - 10.5802/afst.1681
LA  - en
ID  - AFST_2021_6_30_3_463_0
ER  - 
%0 Journal Article
%A Ismael Bailleul
%T On the definition of a solution to a rough differential equation
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 463-478
%V 30
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1681/
%R 10.5802/afst.1681
%G en
%F AFST_2021_6_30_3_463_0
Ismael Bailleul. On the definition of a solution to a rough differential equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 463-478. doi : 10.5802/afst.1681. https://afst.centre-mersenne.org/articles/10.5802/afst.1681/

[1] Hajer Bahouri; Jean-Yves Chemin; Raphaël Danchin Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | MR | Zbl

[2] Ismael Bailleul A flows-based approach to rough differential equations (https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf)

[3] Ismael Bailleul Flows driven by Banach space-valued rough paths, Séminaire de Probabilités XLVI (Lecture Notes in Mathematics), Volume 2123, Springer, 2014, pp. 195-205 | DOI | MR | Zbl

[4] Ismael Bailleul Flows driven by rough paths, Rev. Mat. Iberoam., Volume 31 (2015) no. 3, pp. 901-934 | DOI | MR | Zbl

[5] Fabrice Baudoin Diffusion processes and stochastic calculus, EMS Textbooks in Mathematics, European Mathematical Society, 2014, xii+276 pages | Zbl

[6] Youness Boutaib; Lajos Gergely Gyurkó; Terry J. Lyons; Danyu Yang Dimension-free Euler estimates of rough differential equations, Rev. Roum. Math. Pures Appl., Volume 59 (2014) no. 1, pp. 25-53 | MR | Zbl

[7] Antoine Brault; Antoine Lejay The nonlinear sewing lemma II: Lipschitz continuous formulation (2018) (https://arxiv.org/abs/1810.11988) | Zbl

[8] Thomas Cass; Bruce K. Driver; Nengli Lim; Christian Litterer On the integration of weakly geometric rough paths, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1505-1524 | MR | Zbl

[9] Thomas Cass; Martin Weidner Tree algebras over topological vector spaces in rough path theory (2017) (https://arxiv.org/abs/1604.07352)

[10] Professor Cayley On the Analytical Forms Called Trees, Am. J. Math., Volume 4 (1881) no. 1-4, pp. 266-268 | DOI | MR | Zbl

[11] Philippe Chartier; Ernst Hairer; Gilles Vilmart Algebraic structures of B-series, Found. Comput. Math., Volume 10 (2010) no. 4, pp. 407-427 | DOI | MR | Zbl

[12] Kuo-Tsai Chen Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. Math., Volume 65 (1957), pp. 163-178 | DOI | MR | Zbl

[13] Alain Connes; Dirk Kreimer Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys., Volume 199 (1998) no. 1, pp. 203-242 | DOI | MR | Zbl

[14] Alexander M. Davie Differential equations driven by rough paths: an approach via discrete approximation, AMRX, Appl. Math. Res. Express (2008), abm009, 40 pages [Issue information previously given as no. 2 (2007)] | MR | Zbl

[15] Peter K. Friz; Martin Hairer A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014, xiv+251 pages | Zbl

[16] Massimiliano Gubinelli Controlling rough paths, J. Funct. Anal., Volume 216 (2004) no. 1, pp. 86-140 | DOI | MR | Zbl

[17] Massimiliano Gubinelli Ramification of rough paths, J. Differ. Equations, Volume 248 (2010) no. 4, pp. 693-721 | DOI | MR | Zbl

[18] Martin Hairer; David Kelly Geometric versus non-geometric rough paths, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 51 (2015) no. 1, pp. 207-251 | Numdam | MR | Zbl

[19] Terry J. Lyons Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl

[20] Terry J. Lyons; Michael Caruana; Thierry Lévy Differential equations driven by rough paths, Lecture Notes in Mathematics, 1908, Springer, 2007, xviii+109 pages (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard) | MR | Zbl

[21] Christophe Reutenauer Free Lie algebras, London Mathematical Society Monographs. New Series, 7, Clarendon Press, 1993, xviii+269 pages (Oxford Science Publications) | MR | Zbl

[22] Moss E. Sweedler Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., 1969, vii+336 pages | Zbl

Cited by Sources: