There are several ways of defining what it means for a path to solve a rough differential equation. The most commonly used notion is due to Davie; it involves a Taylor expansion property that only makes sense a priori in a given coordinate system. Bailleul’s definition [4] is coordinate independent. Cass and Weidner [9] recently proved that the two definitions are actually equivalent, using deep algebraic insights on rough paths. We provide in this note an algebraic-free elementary short proof of this fact.
Différentes notions de solution d’une équations différentielle rugueuses sont disponibles dans la littérature. La notion la plus utilisée est due à Davie ; elle met en jeu un développement de Taylor, dont le sens est lié à un choix de coordonnées. La définission donnée par Bailleul dans [4] ne dépend pas d’un choix de coordonnées. Cass et Weidner [9] ont récemment démontré que les deux définitions sont en fait équivalentes, en s’appuyant sur des résultats algébriques élaborés. On donne dans cette note une démonstration courte et élémentaire de ce fait.
Accepted:
Published online:
Ismael Bailleul 1
@article{AFST_2021_6_30_3_463_0, author = {Ismael Bailleul}, title = {On the definition of a solution to a rough differential equation}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {463--478}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {3}, year = {2021}, doi = {10.5802/afst.1681}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1681/} }
TY - JOUR AU - Ismael Bailleul TI - On the definition of a solution to a rough differential equation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 463 EP - 478 VL - 30 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1681/ DO - 10.5802/afst.1681 LA - en ID - AFST_2021_6_30_3_463_0 ER -
%0 Journal Article %A Ismael Bailleul %T On the definition of a solution to a rough differential equation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 463-478 %V 30 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1681/ %R 10.5802/afst.1681 %G en %F AFST_2021_6_30_3_463_0
Ismael Bailleul. On the definition of a solution to a rough differential equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 463-478. doi : 10.5802/afst.1681. https://afst.centre-mersenne.org/articles/10.5802/afst.1681/
[1] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | MR | Zbl
[2] A flows-based approach to rough differential equations (https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf)
[3] Flows driven by Banach space-valued rough paths, Séminaire de Probabilités XLVI (Lecture Notes in Mathematics), Volume 2123, Springer, 2014, pp. 195-205 | DOI | MR | Zbl
[4] Flows driven by rough paths, Rev. Mat. Iberoam., Volume 31 (2015) no. 3, pp. 901-934 | DOI | MR | Zbl
[5] Diffusion processes and stochastic calculus, EMS Textbooks in Mathematics, European Mathematical Society, 2014, xii+276 pages | Zbl
[6] Dimension-free Euler estimates of rough differential equations, Rev. Roum. Math. Pures Appl., Volume 59 (2014) no. 1, pp. 25-53 | MR | Zbl
[7] The nonlinear sewing lemma II: Lipschitz continuous formulation (2018) (https://arxiv.org/abs/1810.11988) | Zbl
[8] On the integration of weakly geometric rough paths, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1505-1524 | MR | Zbl
[9] Tree algebras over topological vector spaces in rough path theory (2017) (https://arxiv.org/abs/1604.07352)
[10] On the Analytical Forms Called Trees, Am. J. Math., Volume 4 (1881) no. 1-4, pp. 266-268 | DOI | MR | Zbl
[11] Algebraic structures of B-series, Found. Comput. Math., Volume 10 (2010) no. 4, pp. 407-427 | DOI | MR | Zbl
[12] Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. Math., Volume 65 (1957), pp. 163-178 | DOI | MR | Zbl
[13] Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys., Volume 199 (1998) no. 1, pp. 203-242 | DOI | MR | Zbl
[14] Differential equations driven by rough paths: an approach via discrete approximation, AMRX, Appl. Math. Res. Express (2008), abm009, 40 pages [Issue information previously given as no. 2 (2007)] | MR | Zbl
[15] A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014, xiv+251 pages | Zbl
[16] Controlling rough paths, J. Funct. Anal., Volume 216 (2004) no. 1, pp. 86-140 | DOI | MR | Zbl
[17] Ramification of rough paths, J. Differ. Equations, Volume 248 (2010) no. 4, pp. 693-721 | DOI | MR | Zbl
[18] Geometric versus non-geometric rough paths, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 51 (2015) no. 1, pp. 207-251 | Numdam | MR | Zbl
[19] Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl
[20] Differential equations driven by rough paths, Lecture Notes in Mathematics, 1908, Springer, 2007, xviii+109 pages (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard) | MR | Zbl
[21] Free Lie algebras, London Mathematical Society Monographs. New Series, 7, Clarendon Press, 1993, xviii+269 pages (Oxford Science Publications) | MR | Zbl
[22] Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., 1969, vii+336 pages | Zbl
Cited by Sources: