Dirichlet twists of GL n -automorphic L-functions and hyper-Kloosterman Dirichlet series
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 633-703.

We calculate mean values of GL n -automorphic L-functions twisted by primitive even Dirichlet characters of prime-power conductor, at arbitrary points within the critical strip, by derivation of special Voronoi summation formulae. Our calculation is novel in that the twisted sum can be expressed in terms of the average itself, and also that it sees the derivation of various new summation formulae in the setting of prime-power modulus. One consequence, as we explain, is to show the analytic continuation and additive summation formulae for hyper-Kloosterman Dirichlet series associated to GL n -automorphic L-functions.

Nous calculons les valuers moyennes des fonctions L automorphes sur GL n tordues par des caractères de Dirichlet primitifs et pairs, du conducteur une puissance d’un nombre premier, à des points arbitraires dans la bande critique, en dérivant des formules de sommation spéciales du type Voronoi. Notre calcul est nouveau car la somme est exprimé en termes de la moyenne elle-même, et aussi qu’il voit la dérivation de diverses nouvelles formules de sommation dans le regime des puissances d’un nombre premier. Une conséquence, comme nous l’expliquons, est de montrer les prolongations analytiques et des formules de sommation additive pour les séries de Dirichlet hyper-Kloosterman associées aux fonctions L automorphes sur GL n .

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1687

Jeanine Van Order 1

1 Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_3_633_0,
     author = {Jeanine Van Order},
     title = {Dirichlet twists of $\protect \mathrm{GL}_n$-automorphic $L$-functions and {hyper-Kloosterman} {Dirichlet} series},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {633--703},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {3},
     year = {2021},
     doi = {10.5802/afst.1687},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1687/}
}
TY  - JOUR
AU  - Jeanine Van Order
TI  - Dirichlet twists of $\protect \mathrm{GL}_n$-automorphic $L$-functions and hyper-Kloosterman Dirichlet series
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 633
EP  - 703
VL  - 30
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1687/
DO  - 10.5802/afst.1687
LA  - en
ID  - AFST_2021_6_30_3_633_0
ER  - 
%0 Journal Article
%A Jeanine Van Order
%T Dirichlet twists of $\protect \mathrm{GL}_n$-automorphic $L$-functions and hyper-Kloosterman Dirichlet series
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 633-703
%V 30
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1687/
%R 10.5802/afst.1687
%G en
%F AFST_2021_6_30_3_633_0
Jeanine Van Order. Dirichlet twists of $\protect \mathrm{GL}_n$-automorphic $L$-functions and hyper-Kloosterman Dirichlet series. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 633-703. doi : 10.5802/afst.1687. https://afst.centre-mersenne.org/articles/10.5802/afst.1687/

[1] Farrell Brumley; Valentin Blomer Estimations élémentaires des sommes de Kloosterman multiples, Le spectre des surfaces hyperboliques (Savoirs actuels), CNRS Éditions, 2011 (Appendix)

[2] Dorian Goldfeld; Xiaoqing Li Voronoi formulas on GL(n), Int. Math. Res. Not., Volume 2006 (2006) no. 10, 86295, 25 pages | MR | Zbl

[3] Dorian Goldfeld; Xiaoqing Li The Voronoi formula for GL(n,), Int. Math. Res. Not., Volume 2008 (2008), rnm144, 39 pages | Zbl

[4] Atsushi Ichino; Nicolas Templier On the Voronoi formula for GL(n), Am. J. Math., Volume 135 (2013) no. 1, pp. 65-101 | DOI | MR | Zbl

[5] Henryk Iwaniec; Emmanuel Kowalski Analytic Number Theory, Colloquium Publications, 53, American Mathematical Society, 2004 | MR | Zbl

[6] Henry H. Kim; Peter Sarnak Refined estimates towards the Ramanujan and Selberg Conjectures, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 139-183 Appendix to H. Kim, “Functoriality for the exterior square of GL(4) and symmetric fourth of GL(2)

[7] Eren Mehmet Kıral; Fan Zhou The Voronoi Formula and double Dirichlet series, Algebra Number Theory, Volume 10 (2016) no. 10, pp. 2267-2286 | DOI | MR | Zbl

[8] A. F. Lavrik Approximate functional equations of Dirichlet functions, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 32 (1966), pp. 134-185 | MR

[9] Xiannan Li Upper Bounds on L-Functions at the Edge of the Critical Strip, Int. Math. Res. Not., Volume 2010 (2010) no. 4, pp. 727-755 | MR | Zbl

[10] Wenzhi Luo; Zeév Rudnick; Peter Sarnak On Selberg’s Eigenvalue Conjecture, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 387-401 | MR

[11] Stephen D. Miller; Wilfried Schmid A general Voronoi summation formula for GL(n,Z), Geometric analysis: Present and future (Harvard University, Cambridge, USA, 2008) (Advanced Lectures in Mathematics), Volume 18, International Press, 2008 | Zbl

[12] Stephen D. Miller; Fan Zhou The balanced Voronoi formulas for GL(n), Int. Math. Res. Not., Volume 2019 (2019) no. 11, pp. 3473-3484 | DOI | MR | Zbl

[13] Giuseppe Molteni Upper and lower bounds at s=1 for certain Dirichlet series with Euler product, Duke Math. J., Volume 111 (2002) no. 1, pp. 133-158 | DOI | MR | Zbl

[14] Peter Schneider; Jeremy Teitelbaum p-adic Fourier Theory, Doc. Math., Volume 6 (2001), pp. 447-481 | MR

[15] Atle Selberg On the estimation of Fourier coefficients of modular forms, Theory of numbers (California Institute of Technology, Pasadena, USA, 1963) (Proceedings of Symposia in Pure Mathematics), Volume 8, American Mathematical Society, 1965, pp. 1-15 | Zbl

[16] Georgiĭ Voronoĭ Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. Éc. Norm. Supér., Volume 21 (1904), pp. 207-267 | DOI | Numdam | MR | Zbl

Cited by Sources: