We prove the convergence of the normalized Fubini–Study measures and the logarithms of the Bergman kernels of various Bergman spaces of holomorphic and weakly holomorphic sections associated to a singular Hermitian holomorphic line bundle on an algebraic curve. Using this, we study the asymptotic distribution of the zeros of random sequences of sections in these spaces.
Nous prouvons la convergence des mesures de Fubini–Study normalisées et des logarithmes des noyaux de Bergman de certains espaces de Bergman de sections holomorphes et faiblement holomorphes associées à un fibré holomorphe hermitien singulier sur une courbe algébrique. A l’aide de ce résultat, nous étudions la distribution asymptotique des zéros de suites aléatoires de sections dans ces espaces.
Keywords: Bergman kernel, Fubini–Study current, singular Hermitian metric, algebraic curve, weakly holomorphic sections
Dan Coman 1; George Marinescu 2
@article{AFST_2022_6_31_3_949_0, author = {Dan Coman and George Marinescu}, title = {Equidistribution for weakly holomorphic sections of line bundles on algebraic curves}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {949--973}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {3}, year = {2022}, doi = {10.5802/afst.1709}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1709/} }
TY - JOUR AU - Dan Coman AU - George Marinescu TI - Equidistribution for weakly holomorphic sections of line bundles on algebraic curves JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 949 EP - 973 VL - 31 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1709/ DO - 10.5802/afst.1709 LA - en ID - AFST_2022_6_31_3_949_0 ER -
%0 Journal Article %A Dan Coman %A George Marinescu %T Equidistribution for weakly holomorphic sections of line bundles on algebraic curves %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 949-973 %V 31 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1709/ %R 10.5802/afst.1709 %G en %F AFST_2022_6_31_3_949_0
Dan Coman; George Marinescu. Equidistribution for weakly holomorphic sections of line bundles on algebraic curves. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 949-973. doi : 10.5802/afst.1709. https://afst.centre-mersenne.org/articles/10.5802/afst.1709/
[1] A survey on zeros of random holomorphic sections, Dolomites Res. Notes Approx., Volume 11 (2018), pp. 1-19 | MR
[2] Universality results for zeros of random holomorphic sections, Trans. Am. Math. Soc., Volume 373 (2020) no. 6, pp. 3765-3791 | DOI | MR | Zbl
[3] Complex analytic sets, Mathematics and its Applications, 46, Kluwer Academic Publishers, 1989, 372 pages | DOI
[4] Equidistribution for sequences of line bundles on normal Kähler spaces, Geom. Topol., Volume 21 (2017) no. 2, pp. 923-962 | DOI | Zbl
[5] Convergence of Fubini-Study currents for orbifold line bundles, Int. J. Math., Volume 24 (2013) no. 7, 1350051, 27 pages | MR | Zbl
[6] Equidistribution results for singular metrics on line bundles, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 3, pp. 497-536 | DOI | MR | Zbl
[7] Hölder singular metrics on big line bundles and equidistribution, Int. Math. Res. Not., Volume 2016 (2016) no. 16, pp. 5048-5075 | DOI | Zbl
[8] Approximation and equidistribution results for pseudo-effective line bundles, J. Math. Pures Appl., Volume 115 (2018), pp. 218-236 | DOI | MR | Zbl
[9] Estimations pour l’opérateur d’un fibré holomorphe semipositif au–dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 457-511 | DOI | Zbl
[10] Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. Fr., Nouv. Sér., Volume 19 (1985), pp. 1-125 | Zbl
[11] Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1990, pp. 87-104 | Zbl
[12] A numerical criterion for very ample line bundles, J. Differ. Geom., Volume 37 (1993) no. 2, pp. 323-374 | MR | Zbl
[13] Equidistribution and convergence speed for zeros of holomorphic sections of singular Hermitian line bundles, J. Funct. Anal., Volume 271 (2016) no. 11, pp. 3082-3110 | DOI | MR | Zbl
[14] Asymptotic distribution of zeros of holomorphic sections in the non compact setting, J. Stat. Phys., Volume 148 (2012), pp. 113-136 | DOI | Zbl
[15] The Levi problem on complex spaces with singularities, Math. Ann., Volume 248 (1980), pp. 47-72 | DOI | MR | Zbl
[16] Lectures on Riemann surfaces, Graduate Texts in Mathematics, 81, Springer, 1981, 254 pages | DOI
[17] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | Zbl
[18] Plurisubharmonische Funktionen in komplexen Räumen, Math. Z., Volume 65 (1956), pp. 175-194 | DOI | Zbl
[19] Coherent Analytic Sheaves, Grundlehren der Mathematischen Wissenschaften, 265, Springer, 1984, 249 pages | DOI
[20] Introduction to algebraic curves, Translations of Mathematical Monographs, 76, American Mathematical Society, 1989, 221 pages | DOI
[21] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, 1994, 813 pages | DOI
[22] Introduction to holomorphic functions of several variables. Vol. II. Local theory, The Wadsworth & Brooks/Cole Mathematics Series, 1990, Wadsworth & Brooks/Cole Advanced Books & Software, 1990, 218 pages
[23] Notions of convexity, Progress in Mathematics, 127, Birkhäuser, 1994, 414 pages
[24] Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254, Birkhäuser, 2007, 422 pages
[25] Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface (2018) (https://arxiv.org/abs/1811.00992)
[26] On the extension of holomorphic functions, Math. Z., Volume 195 (1987), pp. 97-204 | Zbl
[27] -Riemann–Roch for singular complex curves, J. Singul., Volume 11 (2015), pp. 67-84 | MR | Zbl
[28] Convergence of random zeros on complex manifolds, Sci. China, Ser. A, Volume 51 (2008) no. 4, pp. 707-720 | DOI | MR | Zbl
[29] Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999) no. 3, pp. 661-683 | DOI | MR | Zbl
[30] Number variance of random zeros on complex manifolds, Geom. Funct. Anal., Volume 18 (2008), pp. 1422-1475 | DOI | MR | Zbl
[31] On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130 | Zbl
Cited by Sources: