We construct a semiclassical Schrödinger operator such that the imaginary part of its resonances closest to the real axis changes by a term of size when a real compactly supported potential of size is added.
On construit un opérateur de Schrödinger semiclassique dont la partie imaginaire des résonances les plus proches de l’axe réel est modifiée par un terme d’ordre lorsqu’un potentiel réel à support compact de taille lui est ajouté.
Accepted:
Published online:
Keywords: Resonances, semiclassical asymptotics, microlocal analysis, spectral instability, Schrödinger operators
Jean-François Bony 1; Setsuro Fujiié 2; Thierry Ramond 3; Maher Zerzeri 4
@article{AFST_2023_6_32_3_535_0, author = {Jean-Fran\c{c}ois Bony and Setsuro Fujii\'e and Thierry Ramond and Maher Zerzeri}, title = {An example of resonance instability}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {535--554}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {3}, year = {2023}, doi = {10.5802/afst.1743}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1743/} }
TY - JOUR AU - Jean-François Bony AU - Setsuro Fujiié AU - Thierry Ramond AU - Maher Zerzeri TI - An example of resonance instability JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 535 EP - 554 VL - 32 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1743/ DO - 10.5802/afst.1743 LA - en ID - AFST_2023_6_32_3_535_0 ER -
%0 Journal Article %A Jean-François Bony %A Setsuro Fujiié %A Thierry Ramond %A Maher Zerzeri %T An example of resonance instability %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 535-554 %V 32 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1743/ %R 10.5802/afst.1743 %G en %F AFST_2023_6_32_3_535_0
Jean-François Bony; Setsuro Fujiié; Thierry Ramond; Maher Zerzeri. An example of resonance instability. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 3, pp. 535-554. doi : 10.5802/afst.1743. https://afst.centre-mersenne.org/articles/10.5802/afst.1743/
[1] A perturbation theory of resonances, Commun. Pure Appl. Math., Volume 51 (1998) no. 11, pp. 11-12 | Zbl
[2] Erratum: “A perturbation theory of resonances”, Commun. Pure Appl. Math., Volume 52 (1999) no. 12, pp. 1617-1618
[3] Minoration de la résolvante dans le cas captif, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1279-1282
[4] Microlocal kernel of pseudodifferential operators at a hyperbolic fixed point, J. Funct. Anal., Volume 252 (2007) no. 1, pp. 68-125
[5] Resonances for homoclinic trapped sets, Astérisque, 405, Société Mathématique de France, 2018, vii+314 pages
[6] Lower resolvent bounds and Lyapunov exponents, AMRX, Appl. Math. Res. Express, Volume 2016 (2016) no. 1, pp. 68-97
[7] Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, 2019
[8] Width of shape resonances for non globally analytic potentials, J. Math. Soc. Japan, Volume 63 (2011) no. 1, pp. 1-78
[9] Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Mém. Soc. Math. Fr., Nouv. Sér., 31, Société Mathématique de France, 1988
[10] Semiclassical resonances generated by a closed trajectory of hyperbolic type, Commun. Math. Phys., Volume 108 (1987), pp. 391-421
[11] Résonances en limite semi-classique, Mém. Soc. Math. Fr., Nouv. Sér., 24/25, Société Mathématique de France, 1986, iv+228 pages
[12] On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., Volume 23 (1983) no. 1, pp. 127-194
[13] Quantum decay rates in chaotic scattering, Acta Math., Volume 203 (2009) no. 2, pp. 149-233
[14] Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986) (Lecture Notes in Mathematics), Volume 1256, Springer, 1986, pp. 402-429
[15] Lectures on resonances, 2007 (preprint at http://sjostrand.perso.math.cnrs.fr/)
[16] Spectra and pseudospectra, Princeton University Press, 2005, xviii+606 pages
[17] Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré, Volume 12 (2011) no. 7, pp. 1349-1385
Cited by Sources: