An example of resonance instability
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 3, pp. 535-554.

We construct a semiclassical Schrödinger operator such that the imaginary part of its resonances closest to the real axis changes by a term of size h when a real compactly supported potential of size o(h) is added.

On construit un opérateur de Schrödinger semiclassique dont la partie imaginaire des résonances les plus proches de l’axe réel est modifiée par un terme d’ordre h lorsqu’un potentiel réel à support compact de taille o(h) lui est ajouté.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1743
Classification: 35B34, 35B35, 81Q20, 37C25, 35J10, 35P20
Keywords: Resonances, semiclassical asymptotics, microlocal analysis, spectral instability, Schrödinger operators

Jean-François Bony 1; Setsuro Fujiié 2; Thierry Ramond 3; Maher Zerzeri 4

1 IMB, CNRS (UMR 5251), Université de Bordeaux, 33405 Talence, France
2 Department of Mathematical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577 Japan
3 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France
4 Université Sorbonne Paris-Nord, LAGA, CNRS (UMR 7539), 93430 Villetaneuse, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_3_535_0,
     author = {Jean-Fran\c{c}ois Bony and Setsuro Fujii\'e and Thierry Ramond and Maher Zerzeri},
     title = {An example of resonance instability},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {535--554},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {3},
     year = {2023},
     doi = {10.5802/afst.1743},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1743/}
}
TY  - JOUR
AU  - Jean-François Bony
AU  - Setsuro Fujiié
AU  - Thierry Ramond
AU  - Maher Zerzeri
TI  - An example of resonance instability
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 535
EP  - 554
VL  - 32
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1743/
DO  - 10.5802/afst.1743
LA  - en
ID  - AFST_2023_6_32_3_535_0
ER  - 
%0 Journal Article
%A Jean-François Bony
%A Setsuro Fujiié
%A Thierry Ramond
%A Maher Zerzeri
%T An example of resonance instability
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 535-554
%V 32
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1743/
%R 10.5802/afst.1743
%G en
%F AFST_2023_6_32_3_535_0
Jean-François Bony; Setsuro Fujiié; Thierry Ramond; Maher Zerzeri. An example of resonance instability. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 3, pp. 535-554. doi : 10.5802/afst.1743. https://afst.centre-mersenne.org/articles/10.5802/afst.1743/

[1] Shmuel Agmon A perturbation theory of resonances, Commun. Pure Appl. Math., Volume 51 (1998) no. 11, pp. 11-12 | Zbl

[2] Shmuel Agmon Erratum: “A perturbation theory of resonances”, Commun. Pure Appl. Math., Volume 52 (1999) no. 12, pp. 1617-1618

[3] Jean-François Bony; Nicolas Burq; Thierry Ramond Minoration de la résolvante dans le cas captif, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1279-1282

[4] Jean-François Bony; Setsuro Fujiié; Thierry Ramond; Maher Zerzeri Microlocal kernel of pseudodifferential operators at a hyperbolic fixed point, J. Funct. Anal., Volume 252 (2007) no. 1, pp. 68-125

[5] Jean-François Bony; Setsuro Fujiié; Thierry Ramond; Maher Zerzeri Resonances for homoclinic trapped sets, Astérisque, 405, Société Mathématique de France, 2018, vii+314 pages

[6] Semyon Dyatlov; Alden Waters Lower resolvent bounds and Lyapunov exponents, AMRX, Appl. Math. Res. Express, Volume 2016 (2016) no. 1, pp. 68-97

[7] Semyon Dyatlov; Maciej Zworski Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, 2019

[8] Setsuro Fujiié; Amina Lahmar-Benbernou; André Martinez Width of shape resonances for non globally analytic potentials, J. Math. Soc. Japan, Volume 63 (2011) no. 1, pp. 1-78

[9] Christian Gérard Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Mém. Soc. Math. Fr., Nouv. Sér., 31, Société Mathématique de France, 1988

[10] Christian Gérard; Johannes Sjöstrand Semiclassical resonances generated by a closed trajectory of hyperbolic type, Commun. Math. Phys., Volume 108 (1987), pp. 391-421

[11] Bernard Helffer; Johannes Sjöstrand Résonances en limite semi-classique, Mém. Soc. Math. Fr., Nouv. Sér., 24/25, Société Mathématique de France, 1986, iv+228 pages

[12] Mitsuru Ikawa On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., Volume 23 (1983) no. 1, pp. 127-194

[13] Stéphane Nonnenmacher; Maciej Zworski Quantum decay rates in chaotic scattering, Acta Math., Volume 203 (2009) no. 2, pp. 149-233

[14] Johannes Sjöstrand Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986) (Lecture Notes in Mathematics), Volume 1256, Springer, 1986, pp. 402-429

[15] Johannes Sjöstrand Lectures on resonances, 2007 (preprint at http://sjostrand.perso.math.cnrs.fr/)

[16] Lloyd Trefethen; Mark Embree Spectra and pseudospectra, Princeton University Press, 2005, xviii+606 pages

[17] Jared Wunsch; Maciej Zworski Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré, Volume 12 (2011) no. 7, pp. 1349-1385

Cited by Sources: