On construit un opérateur de Schrödinger semiclassique dont la partie imaginaire des résonances les plus proches de l’axe réel est modifiée par un terme d’ordre lorsqu’un potentiel réel à support compact de taille lui est ajouté.
We construct a semiclassical Schrödinger operator such that the imaginary part of its resonances closest to the real axis changes by a term of size when a real compactly supported potential of size is added.
Accepté le :
Publié le :
Mots-clés : Resonances, semiclassical asymptotics, microlocal analysis, spectral instability, Schrödinger operators
Jean-François Bony 1 ; Setsuro Fujiié 2 ; Thierry Ramond 3 ; Maher Zerzeri 4

@article{AFST_2023_6_32_3_535_0, author = {Jean-Fran\c{c}ois Bony and Setsuro Fujii\'e and Thierry Ramond and Maher Zerzeri}, title = {An example of resonance instability}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {535--554}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {3}, year = {2023}, doi = {10.5802/afst.1743}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1743/} }
TY - JOUR AU - Jean-François Bony AU - Setsuro Fujiié AU - Thierry Ramond AU - Maher Zerzeri TI - An example of resonance instability JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 535 EP - 554 VL - 32 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1743/ DO - 10.5802/afst.1743 LA - en ID - AFST_2023_6_32_3_535_0 ER -
%0 Journal Article %A Jean-François Bony %A Setsuro Fujiié %A Thierry Ramond %A Maher Zerzeri %T An example of resonance instability %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 535-554 %V 32 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1743/ %R 10.5802/afst.1743 %G en %F AFST_2023_6_32_3_535_0
Jean-François Bony; Setsuro Fujiié; Thierry Ramond; Maher Zerzeri. An example of resonance instability. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 3, pp. 535-554. doi : 10.5802/afst.1743. https://afst.centre-mersenne.org/articles/10.5802/afst.1743/
[1] A perturbation theory of resonances, Commun. Pure Appl. Math., Volume 51 (1998) no. 11, pp. 11-12 | Zbl
[2] Erratum: “A perturbation theory of resonances”, Commun. Pure Appl. Math., Volume 52 (1999) no. 12, pp. 1617-1618
[3] Minoration de la résolvante dans le cas captif, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1279-1282
[4] Microlocal kernel of pseudodifferential operators at a hyperbolic fixed point, J. Funct. Anal., Volume 252 (2007) no. 1, pp. 68-125
[5] Resonances for homoclinic trapped sets, Astérisque, 405, Société Mathématique de France, 2018, vii+314 pages
[6] Lower resolvent bounds and Lyapunov exponents, AMRX, Appl. Math. Res. Express, Volume 2016 (2016) no. 1, pp. 68-97
[7] Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, 2019
[8] Width of shape resonances for non globally analytic potentials, J. Math. Soc. Japan, Volume 63 (2011) no. 1, pp. 1-78
[9] Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Mém. Soc. Math. Fr., Nouv. Sér., 31, Société Mathématique de France, 1988
[10] Semiclassical resonances generated by a closed trajectory of hyperbolic type, Commun. Math. Phys., Volume 108 (1987), pp. 391-421
[11] Résonances en limite semi-classique, Mém. Soc. Math. Fr., Nouv. Sér., 24/25, Société Mathématique de France, 1986, iv+228 pages
[12] On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., Volume 23 (1983) no. 1, pp. 127-194
[13] Quantum decay rates in chaotic scattering, Acta Math., Volume 203 (2009) no. 2, pp. 149-233
[14] Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986) (Lecture Notes in Mathematics), Volume 1256, Springer, 1986, pp. 402-429
[15] Lectures on resonances, 2007 (preprint at http://sjostrand.perso.math.cnrs.fr/)
[16] Spectra and pseudospectra, Princeton University Press, 2005, xviii+606 pages
[17] Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré, Volume 12 (2011) no. 7, pp. 1349-1385
Cité par Sources :