We develop an algorithm of polynomial time complexity to construct the Grushko decomposition of fundamental groups of graphs of free groups with cyclic edge groups. Our methods rely on analysing vertex links of certain CAT(0) square complexes naturally associated with a special class of the above groups. Our main result transforms a one-ended CAT(0) square complex of the above type to one whose vertex links satisfy a strong connectivity condition, as first studied by Brady and Meier.
Nous développons un algorithme polynomial pour construire la décomposition de Grushko du groupe fondamental d’un graphe de groupes libres à sous-groupes d’arêtes cycliques. Notre méthode repose sur l’analyse du link des sommets d’un complexe carré naturellement associé à une classe spéciale des groupes ci-dessus. Notre résultat principal transforme un complexe carré CAT(0) avec un seul bout en un autre dont le link des sommets vérifie une condition de connectivité forte, étudiée pour la première fois par Brady et Meier.
Accepted:
Published online:
Keywords: Free splittings, CAT(0) cube complexes, ends of groups, graphs of groups, Grushko decomposition
M S. Suraj Krishna 1
@article{AFST_2023_6_32_3_555_0, author = {M S. Suraj Krishna}, title = {Vertex links and the {Grushko} decomposition}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {555--576}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {3}, year = {2023}, doi = {10.5802/afst.1744}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1744/} }
TY - JOUR AU - M S. Suraj Krishna TI - Vertex links and the Grushko decomposition JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 555 EP - 576 VL - 32 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1744/ DO - 10.5802/afst.1744 LA - en ID - AFST_2023_6_32_3_555_0 ER -
%0 Journal Article %A M S. Suraj Krishna %T Vertex links and the Grushko decomposition %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 555-576 %V 32 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1744/ %R 10.5802/afst.1744 %G en %F AFST_2023_6_32_3_555_0
M S. Suraj Krishna. Vertex links and the Grushko decomposition. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 3, pp. 555-576. doi : 10.5802/afst.1744. https://afst.centre-mersenne.org/articles/10.5802/afst.1744/
[1] Connectivity at infinity for right angled Artin groups, Trans. Am. Math. Soc., Volume 353 (2001) no. 1, pp. 117-132 | DOI | MR | Zbl
[2] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR
[3] Detecting free splittings in relatively hyperbolic groups, Trans. Am. Math. Soc., Volume 360 (2008) no. 12, pp. 6303-6318 | DOI | MR
[4] The Grushko decomposition of a finite graph of finite rank free groups: an algorithm, Geom. Topol., Volume 9 (2005), pp. 1835-1880 | DOI | MR
[5] Über die Enden topologischer Räume und Gruppen, Math. Z., Volume 33 (1931) no. 1, pp. 692-713 | DOI
[6] Detecting connectedness of the boundary of a hyperbolic group (1999) (unpublished)
[7] Hyperbolic groups, Essays in group theory (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | MR | Zbl
[8] Über die Basen eines freien Produktes von Gruppen, Mat. Sb., N. Ser., Volume 8 (1940), pp. 169-182 | MR
[9] Algorithm 447: Efficient Algorithms for Graph Manipulation, Commun. ACM, Volume 16 (1973) no. 6, pp. 372-378 | DOI
[10] Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv., Volume 16 (1944), pp. 81-100 | MR
[11] Three-manifolds with fundamental group a free product, Bull. Am. Math. Soc., Volume 75 (1969), pp. 972-977 | DOI | MR
[12] Algorithms for essential surfaces in 3-manifolds, Topology and geometry: commemorating SISTAG (Contemporary Mathematics), Volume 314, American Mathematical Society, 2002, pp. 107-124 | DOI | MR
[13] Immersed cycles and the JSJ decomposition, Algebr. Geom. Topol., Volume 20 (2020) no. 4, pp. 1877-1938 | DOI | MR
[14] The end point compactification of manifolds, Pac. J. Math., Volume 10 (1960), pp. 947-963 | MR
[15] On the complexity of the Whitehead minimization problem, Int. J. Algebra Comput., Volume 17 (2007) no. 8, pp. 1611-1634 | DOI | MR
[16] Ends of group pairs and non-positively curved cube complexes, Proc. Lond. Math. Soc., Volume 71 (1995) no. 3, pp. 585-617 | DOI | MR
[17] Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) (London Mathematical Society Lecture Note Series), Volume 36, Cambridge University Press, 1979, pp. 137-203 | MR
[18] Trees, Springer, 1980, ix+142 pages (translated from the French by John Stillwell) | MR
[19] Die erste Cohomologiegruppe von Überlagerungen und Homotopie-Eigenschaften dreidimensionaler Mannigfaltigkeiten, Comment. Math. Helv., Volume 23 (1949), pp. 303-333 | MR
[20] Whitehead graphs on handlebodies, Geometric group theory down under (Canberra, 1996), Walter de Gruyter, 1999, pp. 317-330 | MR
[21] Detecting geometric splittings in finitely presented groups, Trans. Am. Math. Soc., Volume 370 (2018) no. 8, pp. 5635-5704 | DOI | MR
[22] On equivalent sets of elements in a free group, Ann. Math., Volume 37 (1936) no. 4, pp. 782-800 | DOI | MR
[23] One-ended subgroups of graphs of free groups with cyclic edge groups, Geom. Topol., Volume 16 (2012) no. 2, pp. 665-683 | DOI | MR
[24] Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups, Ph. D. Thesis, Princeton University (1996) (126 pages, https://www.proquest.com/docview/304259249)
Cited by Sources: