Vertex links and the Grushko decomposition
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 3, pp. 555-576.

We develop an algorithm of polynomial time complexity to construct the Grushko decomposition of fundamental groups of graphs of free groups with cyclic edge groups. Our methods rely on analysing vertex links of certain CAT(0) square complexes naturally associated with a special class of the above groups. Our main result transforms a one-ended CAT(0) square complex of the above type to one whose vertex links satisfy a strong connectivity condition, as first studied by Brady and Meier.

Nous développons un algorithme polynomial pour construire la décomposition de Grushko du groupe fondamental d’un graphe de groupes libres à sous-groupes d’arêtes cycliques. Notre méthode repose sur l’analyse du link des sommets d’un complexe carré naturellement associé à une classe spéciale des groupes ci-dessus. Notre résultat principal transforme un complexe carré CAT(0) avec un seul bout en un autre dont le link des sommets vérifie une condition de connectivité forte, étudiée pour la première fois par Brady et Meier.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1744
Classification: 20F65, 20F67, 20E06, 20E08
Keywords: Free splittings, CAT(0) cube complexes, ends of groups, graphs of groups, Grushko decomposition

M S. Suraj Krishna 1

1 Tata Institute of Fundamental Research, School of Mathematics, Mumbai 400005, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_3_555_0,
     author = {M S. Suraj Krishna},
     title = {Vertex links and the {Grushko} decomposition},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {555--576},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {3},
     year = {2023},
     doi = {10.5802/afst.1744},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1744/}
}
TY  - JOUR
AU  - M S. Suraj Krishna
TI  - Vertex links and the Grushko decomposition
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 555
EP  - 576
VL  - 32
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1744/
DO  - 10.5802/afst.1744
LA  - en
ID  - AFST_2023_6_32_3_555_0
ER  - 
%0 Journal Article
%A M S. Suraj Krishna
%T Vertex links and the Grushko decomposition
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 555-576
%V 32
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1744/
%R 10.5802/afst.1744
%G en
%F AFST_2023_6_32_3_555_0
M S. Suraj Krishna. Vertex links and the Grushko decomposition. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 3, pp. 555-576. doi : 10.5802/afst.1744. https://afst.centre-mersenne.org/articles/10.5802/afst.1744/

[1] Noel Brady; John Meier Connectivity at infinity for right angled Artin groups, Trans. Am. Math. Soc., Volume 353 (2001) no. 1, pp. 117-132 | DOI | MR | Zbl

[2] Martin R. Bridson; André Haefliger Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR

[3] François Dahmani; Daniel Groves Detecting free splittings in relatively hyperbolic groups, Trans. Am. Math. Soc., Volume 360 (2008) no. 12, pp. 6303-6318 | DOI | MR

[4] Guo-An Diao; Mark Feighn The Grushko decomposition of a finite graph of finite rank free groups: an algorithm, Geom. Topol., Volume 9 (2005), pp. 1835-1880 | DOI | MR

[5] Hans Freudenthal Über die Enden topologischer Räume und Gruppen, Math. Z., Volume 33 (1931) no. 1, pp. 692-713 | DOI

[6] V. Gerasimov Detecting connectedness of the boundary of a hyperbolic group (1999) (unpublished)

[7] Mikhael Gromov Hyperbolic groups, Essays in group theory (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | MR | Zbl

[8] I. Gruschko Über die Basen eines freien Produktes von Gruppen, Mat. Sb., N. Ser., Volume 8 (1940), pp. 169-182 | MR

[9] John Hopcroft; Robert Tarjan Algorithm 447: Efficient Algorithms for Graph Manipulation, Commun. ACM, Volume 16 (1973) no. 6, pp. 372-378 | DOI

[10] Heinz Hopf Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv., Volume 16 (1944), pp. 81-100 | MR

[11] William Jaco Three-manifolds with fundamental group a free product, Bull. Am. Math. Soc., Volume 75 (1969), pp. 972-977 | DOI | MR

[12] William Jaco; David Letscher; J. Hyam Rubinstein Algorithms for essential surfaces in 3-manifolds, Topology and geometry: commemorating SISTAG (Contemporary Mathematics), Volume 314, American Mathematical Society, 2002, pp. 107-124 | DOI | MR

[13] Suraj Krishna M S Immersed cycles and the JSJ decomposition, Algebr. Geom. Topol., Volume 20 (2020) no. 4, pp. 1877-1938 | DOI | MR

[14] Frank Raymond The end point compactification of manifolds, Pac. J. Math., Volume 10 (1960), pp. 947-963 | MR

[15] Abdó Roig; Enric Ventura; Pascal Weil On the complexity of the Whitehead minimization problem, Int. J. Algebra Comput., Volume 17 (2007) no. 8, pp. 1611-1634 | DOI | MR

[16] Michah Sageev Ends of group pairs and non-positively curved cube complexes, Proc. Lond. Math. Soc., Volume 71 (1995) no. 3, pp. 585-617 | DOI | MR

[17] Peter Scott; Terry Wall Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) (London Mathematical Society Lecture Note Series), Volume 36, Cambridge University Press, 1979, pp. 137-203 | MR

[18] Jean-Pierre Serre Trees, Springer, 1980, ix+142 pages (translated from the French by John Stillwell) | MR

[19] Ernst Specker Die erste Cohomologiegruppe von Überlagerungen und Homotopie-Eigenschaften dreidimensionaler Mannigfaltigkeiten, Comment. Math. Helv., Volume 23 (1949), pp. 303-333 | MR

[20] John R. Stallings Whitehead graphs on handlebodies, Geometric group theory down under (Canberra, 1996), Walter de Gruyter, 1999, pp. 317-330 | MR

[21] Nicholas W. M. Touikan Detecting geometric splittings in finitely presented groups, Trans. Am. Math. Soc., Volume 370 (2018) no. 8, pp. 5635-5704 | DOI | MR

[22] John H. C. Whitehead On equivalent sets of elements in a free group, Ann. Math., Volume 37 (1936) no. 4, pp. 782-800 | DOI | MR

[23] Henry Wilton One-ended subgroups of graphs of free groups with cyclic edge groups, Geom. Topol., Volume 16 (2012) no. 2, pp. 665-683 | DOI | MR

[24] Daniel T. Wise Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups, Ph. D. Thesis, Princeton University (1996) (126 pages, https://www.proquest.com/docview/304259249)

Cited by Sources: