An explicit estimate of the Bergman kernel for positive line bundles
[Une estimation explicite du noyau de Bergman pour les fibrés de droites positifs]
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 5, pp. 805-816.

Nous donnerons une estimation explicite de la borne inférieure du noyau de Bergman associé à un fibré de droites positif. Dans le cas de la surface compacte de Riemann, notre résultat peut être vu comme une version explicite de l’estimation partielle C0 de Tian.

We shall give an explicit estimate of the lower bound of the Bergman kernel associated to a positive line bundle. In the compact Riemann surface case, our result can be seen as an explicit version of Tian’s partial C0-estimate.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1752
Classification : 32A25
Keywords: Bergman kernel, Ohsawa–Takegoshi theorem
Mots-clés : Noyau Bergman, Théorème d’Ohsawa–Takegoshi

Xu Wang 1

1 Departement of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_5_805_0,
     author = {Xu Wang},
     title = {An explicit estimate of the {Bergman} kernel  for positive line bundles},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {805--816},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {5},
     year = {2023},
     doi = {10.5802/afst.1752},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1752/}
}
TY  - JOUR
AU  - Xu Wang
TI  - An explicit estimate of the Bergman kernel  for positive line bundles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 805
EP  - 816
VL  - 32
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1752/
DO  - 10.5802/afst.1752
LA  - en
ID  - AFST_2023_6_32_5_805_0
ER  - 
%0 Journal Article
%A Xu Wang
%T An explicit estimate of the Bergman kernel  for positive line bundles
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 805-816
%V 32
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1752/
%R 10.5802/afst.1752
%G en
%F AFST_2023_6_32_5_805_0
Xu Wang. An explicit estimate of the Bergman kernel  for positive line bundles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 5, pp. 805-816. doi : 10.5802/afst.1752. https://afst.centre-mersenne.org/articles/10.5802/afst.1752/

[1] Richard H. Bamler Convergence of Ricci flows with bounded scalar curvature, Ann. Math., Volume 188 (2018) no. 3, pp. 753-831 | MR | Zbl

[2] Bo Berndtsson Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl

[3] Bo Berndtsson; László Lempert A proof of the Ohsawa–Takegoshi theorem with sharp estimates, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1461-1472 | DOI | MR

[4] Zbigniew Błocki Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl

[5] Zbigniew Błocki Cauchy–Riemann meet Monge-Ampère, Bull. Math. Sci., Volume 4 (2014) no. 3, pp. 433-480 | DOI

[6] Zbigniew Błocki; Włodzimierz Zwonek Estimates for the Bergman Kernel and the Multidimensional Suita Conjecture (2014) | arXiv

[7] Xiuxiong Chen; Bing Wang Space of Ricci flows I, Pure Appl. Math., Volume 65 (2012) no. 10, pp. 1399-1457 | DOI | MR

[8] Xiuxiong Chen; Bing Wang Space of Ricci flows II (2014) | arXiv

[9] Jean-Pierre Demailly Singular hermitian metrics on positive line bundles, Complex algebraic varieties (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 87-104 | MR | Zbl

[10] Simon Donaldson; Song Sun Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Algebr. Geom., Volume 213 (2014) no. 1, pp. 63-106

[11] Robert E. Greene; Hung-Hsi Wu Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, 699, Springer, 1979 | DOI

[12] Qi’an Guan; Xiangyu Zhou A solution of an L2 extension problem with an optimal estimate and applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | MR | Zbl

[13] Ernst Heintze; Hermann Karcher A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 451-470 | DOI | Numdam | MR

[14] Wenshuai Jiang Bergman kernel along the Kähler–Ricci flow and Tian’s conjecture, J. Reine Angew. Math., Volume 717 (2016), pp. 195-226 | DOI | MR

[15] Wenshuai Jiang; Feng Wang; Xiaohua Zhu Bergman kernels for a sequence of almost Kähler-Ricci solitons, Ann. Inst. Fourier, Volume 67 (2017) no. 3, pp. 1279-1320 | DOI | Numdam

[16] Gang Liu; Gábor Székelyhidi Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below (2018) | arXiv

[17] Frank Morgan; David L. Johnson Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 1017-1041 | MR | Zbl

[18] T. Nguyen; X. Wang On and around the Berndtsson-Lempert method in Ohsawa-Takegoshi theory (to appear)

[19] Takeo Ohsawa; Kensho Takegoshi On the extension of L2-holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204 | DOI | Zbl

[20] Gábor Székelyhidi The partial C0-estimate along the continuity method, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 537-560 | DOI | MR

[21] Gang Tian On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130

[22] Gang Tian On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., Volume 101 (1990) no. 1, pp. 101-172 | DOI | MR

[23] Gang Tian Partial C0-estimates for Kähler-Einstein metrics, Commun. Math. Stat., Volume 1 (2013) no. 2, pp. 105-113 | DOI | Zbl

[24] Feng Wang; Xiaohua Zhu Tian’s partial C0-estimate implies Hamilton–Tian’s conjecture (2020) | arXiv

[25] Z. Wang The sphere theorem (available in http://staff.ustc.edu.cn/~wangzuoq/Courses/16S-RiemGeom/Notes/Lec22.pdf)

[26] Kewei Zhang Some refinements of the partial C0-estimate (2019) | arXiv

Cité par Sources :