We shall give an explicit estimate of the lower bound of the Bergman kernel associated to a positive line bundle. In the compact Riemann surface case, our result can be seen as an explicit version of Tian’s partial -estimate.
Nous donnerons une estimation explicite de la borne inférieure du noyau de Bergman associé à un fibré de droites positif. Dans le cas de la surface compacte de Riemann, notre résultat peut être vu comme une version explicite de l’estimation partielle de Tian.
Accepted:
Published online:
Keywords: Bergman kernel, Ohsawa–Takegoshi theorem
Mot clés : Noyau Bergman, Théorème d’Ohsawa–Takegoshi
Xu Wang 1
@article{AFST_2023_6_32_5_805_0, author = {Xu Wang}, title = {An explicit estimate of the {Bergman} kernel for positive line bundles}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {805--816}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {5}, year = {2023}, doi = {10.5802/afst.1752}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1752/} }
TY - JOUR AU - Xu Wang TI - An explicit estimate of the Bergman kernel for positive line bundles JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 805 EP - 816 VL - 32 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1752/ DO - 10.5802/afst.1752 LA - en ID - AFST_2023_6_32_5_805_0 ER -
%0 Journal Article %A Xu Wang %T An explicit estimate of the Bergman kernel for positive line bundles %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 805-816 %V 32 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1752/ %R 10.5802/afst.1752 %G en %F AFST_2023_6_32_5_805_0
Xu Wang. An explicit estimate of the Bergman kernel for positive line bundles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 805-816. doi : 10.5802/afst.1752. https://afst.centre-mersenne.org/articles/10.5802/afst.1752/
[1] Convergence of Ricci flows with bounded scalar curvature, Ann. Math., Volume 188 (2018) no. 3, pp. 753-831 | MR | Zbl
[2] Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl
[3] A proof of the Ohsawa–Takegoshi theorem with sharp estimates, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1461-1472 | DOI | MR
[4] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl
[5] Cauchy–Riemann meet Monge-Ampère, Bull. Math. Sci., Volume 4 (2014) no. 3, pp. 433-480 | DOI
[6] Estimates for the Bergman Kernel and the Multidimensional Suita Conjecture (2014) | arXiv
[7] Space of Ricci flows I, Pure Appl. Math., Volume 65 (2012) no. 10, pp. 1399-1457 | DOI | MR
[8] Space of Ricci flows II (2014) | arXiv
[9] Singular hermitian metrics on positive line bundles, Complex algebraic varieties (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 87-104 | MR | Zbl
[10] Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Algebr. Geom., Volume 213 (2014) no. 1, pp. 63-106
[11] Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, 699, Springer, 1979 | DOI
[12] A solution of an extension problem with an optimal estimate and applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | MR | Zbl
[13] A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 451-470 | DOI | Numdam | MR
[14] Bergman kernel along the Kähler–Ricci flow and Tian’s conjecture, J. Reine Angew. Math., Volume 717 (2016), pp. 195-226 | DOI | MR
[15] Bergman kernels for a sequence of almost Kähler-Ricci solitons, Ann. Inst. Fourier, Volume 67 (2017) no. 3, pp. 1279-1320 | DOI | Numdam
[16] Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below (2018) | arXiv
[17] Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 1017-1041 | MR | Zbl
[18] On and around the Berndtsson-Lempert method in Ohsawa-Takegoshi theory (to appear)
[19] On the extension of -holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204 | DOI | Zbl
[20] The partial -estimate along the continuity method, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 537-560 | DOI | MR
[21] On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130
[22] On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., Volume 101 (1990) no. 1, pp. 101-172 | DOI | MR
[23] Partial -estimates for Kähler-Einstein metrics, Commun. Math. Stat., Volume 1 (2013) no. 2, pp. 105-113 | DOI | Zbl
[24] Tian’s partial -estimate implies Hamilton–Tian’s conjecture (2020) | arXiv
[25] The sphere theorem (available in http://staff.ustc.edu.cn/~wangzuoq/Courses/16S-RiemGeom/Notes/Lec22.pdf)
[26] Some refinements of the partial -estimate (2019) | arXiv
Cited by Sources: