Otto calculus has established itself as a powerful tool for proving quantitative energy dissipation estimates and provides with an elegant geometric interpretation of certain functional inequalities such as the Logarithmic Sobolev inequality. However, the local versions of such inequalities, which can be proven by means of Bakry–Émery–Ledoux -calculus, have not yet been given an interpretation in terms of this Riemannian formalism. In this short note we close this gap by explaining how Otto calculus applied to the Schrödinger problem yields a variations interpretation of local logarithmic Sobolev inequalities that could possibly unveil a novel class of local inequalities.
Le calcul d’Otto est un outil puissant pour quantifier la dissipation d’énergie mais surtout il propose une interprétation géométrique simple de certaines inégalités fonctionnelles comme l’inégalité de Sobolev logarithmique. La version locale de ces inégalités, dont la démonstration repose sur le -calcul développé par Bakry, Émery et Ledoux, n’avait pas encore une interprétation géométrique à la Otto. Dans cette courte note, nous comblons cette lacune et montrons comment le calcul d’Otto appliqué au problème de Schrödinger permet une interprétation variationnelle des inégalités de type Sobolev logarithmique locale, ce qui pourrait être un espoir pour l’élaboration de nouvelles d’inégalités locales.
Accepted:
Published online:
Gauthier Clerc 1; Giovanni Conforti 2; Ivan Gentil 1
@article{AFST_2023_6_32_5_823_0, author = {Gauthier Clerc and Giovanni Conforti and Ivan Gentil}, title = {On the variational interpretation of local logarithmic {Sobolev} inequalities}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {823--837}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {5}, year = {2023}, doi = {10.5802/afst.1754}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1754/} }
TY - JOUR AU - Gauthier Clerc AU - Giovanni Conforti AU - Ivan Gentil TI - On the variational interpretation of local logarithmic Sobolev inequalities JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 823 EP - 837 VL - 32 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1754/ DO - 10.5802/afst.1754 LA - en ID - AFST_2023_6_32_5_823_0 ER -
%0 Journal Article %A Gauthier Clerc %A Giovanni Conforti %A Ivan Gentil %T On the variational interpretation of local logarithmic Sobolev inequalities %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 823-837 %V 32 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1754/ %R 10.5802/afst.1754 %G en %F AFST_2023_6_32_5_823_0
Gauthier Clerc; Giovanni Conforti; Ivan Gentil. On the variational interpretation of local logarithmic Sobolev inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 823-837. doi : 10.5802/afst.1754. https://afst.centre-mersenne.org/articles/10.5802/afst.1754/
[1] A user’s guide to optimal transport, Modelling and optimisation of flows on networks (Lecture Notes in Mathematics), Volume 2062, Springer, 2013, pp. 1-155 | DOI | MR
[2] Gradient flows in metric spaces and in the space of probability measures, Birkhäuser, 2008, vii+334 pages | Zbl
[3] On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New trends in stochastic analysis (Charingworth, 1994), World Scientific, 1997, pp. 43-75 | MR
[4] Dimension dependent hypercontractivity for Gaussian kernels, Probab. Theory Relat. Fields, Volume 154 (2012) no. 3-4, pp. 845-874 | DOI | MR | Zbl
[5] The Li–Yau inequality and applications under a curvature-dimension condition, Ann. Inst. Fourier, Volume 67 (2017) no. 1, pp. 397-421 | DOI | Numdam | MR | Zbl
[6] Diffusions hypercontractives, Séminaire de probabilités XIX, Univ. Strasbourg 1983/84 (Lecture Notes in Mathematics), Volume 1123, Springer, 1985, pp. 177-206 | DOI | Numdam | MR | Zbl
[7] Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | DOI
[8] Lévy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math., Volume 123 (1996) no. 2, pp. 259-281 | DOI | MR
[9] A logarithmic Sobolev form of the Li–Yau parabolic inequality, Rev. Mat. Iberoam., Volume 22 (2006) no. 2, pp. 683-702 | DOI | MR | Zbl
[10] Long-time behaviour of entropic interpolations, Potential Anal., Volume 59 (2023) no. 1, pp. 65-95 | DOI | MR | Zbl
[11] A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost, Probab. Theory Relat. Fields, Volume 174 (2019) no. 1-2, pp. 1-47 | DOI
[12] On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl
[13] L’entropie, de Clausius aux inégalités fonctionnelles, Gaz. Math., Soc. Math. Fr., Volume 168 (2021), pp. 15-23 | Zbl
[14] Dynamical aspects of the generalized Schrödinger problem via Otto calculus – A heuristic point of view, Rev. Mat. Iberoam., Volume 36 (2020) no. 4, pp. 1071-1112 | DOI | MR
[15] Second order analysis on , Memoirs of the American Mathematical Society, 1018, American Mathematical Society, 2012, 154 pages | DOI | Zbl
[16] Benamou-Brenier and duality formulas for the entropic cost on spaces, Probab. Theory Relat. Fields, Volume 176 (2020) no. 1-2, pp. 1-34 | DOI | MR
[17] Second order differentiation formula on spaces, J. Eur. Math. Soc., Volume 23 (2021) no. 5, pp. 1727-1795 | DOI | MR | Zbl
[18] The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1-17 | DOI | MR | Zbl
[19] A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 4, pp. 1533-1574 | DOI | Zbl
[20] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201
[21] The geometry of dissipative evolution equations: The porous medium equation, Commun. Partial Differ. Equations, Volume 26 (2001) no. 1-2, pp. 101-174 | DOI | MR | Zbl
[22] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400 | DOI | MR | Zbl
[23] Optimal transport. Old and new., Springer, 2009, xxii+973 pages | DOI | Zbl
Cited by Sources: