On the variational interpretation of local logarithmic Sobolev inequalities
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 823-837.

Otto calculus has established itself as a powerful tool for proving quantitative energy dissipation estimates and provides with an elegant geometric interpretation of certain functional inequalities such as the Logarithmic Sobolev inequality. However, the local versions of such inequalities, which can be proven by means of Bakry–Émery–Ledoux Γ-calculus, have not yet been given an interpretation in terms of this Riemannian formalism. In this short note we close this gap by explaining how Otto calculus applied to the Schrödinger problem yields a variations interpretation of local logarithmic Sobolev inequalities that could possibly unveil a novel class of local inequalities.

Le calcul d’Otto est un outil puissant pour quantifier la dissipation d’énergie mais surtout il propose une interprétation géométrique simple de certaines inégalités fonctionnelles comme l’inégalité de Sobolev logarithmique. La version locale de ces inégalités, dont la démonstration repose sur le Γ-calcul développé par Bakry, Émery et Ledoux, n’avait pas encore une interprétation géométrique à la Otto. Dans cette courte note, nous comblons cette lacune et montrons comment le calcul d’Otto appliqué au problème de Schrödinger permet une interprétation variationnelle des inégalités de type Sobolev logarithmique locale, ce qui pourrait être un espoir pour l’élaboration de nouvelles d’inégalités locales.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1754

Gauthier Clerc 1; Giovanni Conforti 2; Ivan Gentil 1

1 Institut Camille Jordan, Umr Cnrs 5208, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex
2 Département de Mathématiques Appliquées, École Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_5_823_0,
     author = {Gauthier Clerc and Giovanni Conforti and Ivan Gentil},
     title = {On the variational interpretation of local logarithmic {Sobolev} inequalities},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {823--837},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {5},
     year = {2023},
     doi = {10.5802/afst.1754},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1754/}
}
TY  - JOUR
AU  - Gauthier Clerc
AU  - Giovanni Conforti
AU  - Ivan Gentil
TI  - On the variational interpretation of local logarithmic Sobolev inequalities
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 823
EP  - 837
VL  - 32
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1754/
DO  - 10.5802/afst.1754
LA  - en
ID  - AFST_2023_6_32_5_823_0
ER  - 
%0 Journal Article
%A Gauthier Clerc
%A Giovanni Conforti
%A Ivan Gentil
%T On the variational interpretation of local logarithmic Sobolev inequalities
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 823-837
%V 32
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1754/
%R 10.5802/afst.1754
%G en
%F AFST_2023_6_32_5_823_0
Gauthier Clerc; Giovanni Conforti; Ivan Gentil. On the variational interpretation of local logarithmic Sobolev inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 823-837. doi : 10.5802/afst.1754. https://afst.centre-mersenne.org/articles/10.5802/afst.1754/

[1] Luigi Ambrosio; Nicola Gigli A user’s guide to optimal transport, Modelling and optimisation of flows on networks (Lecture Notes in Mathematics), Volume 2062, Springer, 2013, pp. 1-155 | DOI | MR

[2] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Gradient flows in metric spaces and in the space of probability measures, Birkhäuser, 2008, vii+334 pages | Zbl

[3] Dominique Bakry On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New trends in stochastic analysis (Charingworth, 1994), World Scientific, 1997, pp. 43-75 | MR

[4] Dominique Bakry; François Bolley; Ivan Gentil Dimension dependent hypercontractivity for Gaussian kernels, Probab. Theory Relat. Fields, Volume 154 (2012) no. 3-4, pp. 845-874 | DOI | MR | Zbl

[5] Dominique Bakry; François Bolley; Ivan Gentil The Li–Yau inequality and applications under a curvature-dimension condition, Ann. Inst. Fourier, Volume 67 (2017) no. 1, pp. 397-421 | DOI | Numdam | MR | Zbl

[6] Dominique Bakry; Michel Émery Diffusions hypercontractives, Séminaire de probabilités XIX, Univ. Strasbourg 1983/84 (Lecture Notes in Mathematics), Volume 1123, Springer, 1985, pp. 177-206 | DOI | Numdam | MR | Zbl

[7] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | DOI

[8] Dominique Bakry; Michel Ledoux Lévy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math., Volume 123 (1996) no. 2, pp. 259-281 | DOI | MR

[9] Dominique Bakry; Michel Ledoux A logarithmic Sobolev form of the Li–Yau parabolic inequality, Rev. Mat. Iberoam., Volume 22 (2006) no. 2, pp. 683-702 | DOI | MR | Zbl

[10] Gauthier Clerc; Giovanni Conforti; Ivan Gentil Long-time behaviour of entropic interpolations, Potential Anal., Volume 59 (2023) no. 1, pp. 65-95 | DOI | MR | Zbl

[11] Giovanni Conforti A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost, Probab. Theory Relat. Fields, Volume 174 (2019) no. 1-2, pp. 1-47 | DOI

[12] Matthias Erbar; Kazumasa Kuwada; Karl-Theodor Sturm On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl

[13] Ivan Gentil L’entropie, de Clausius aux inégalités fonctionnelles, Gaz. Math., Soc. Math. Fr., Volume 168 (2021), pp. 15-23 | Zbl

[14] Ivan Gentil; Christian Léonard; Luigia Ripani Dynamical aspects of the generalized Schrödinger problem via Otto calculus – A heuristic point of view, Rev. Mat. Iberoam., Volume 36 (2020) no. 4, pp. 1071-1112 | DOI | MR

[15] Nicola Gigli Second order analysis on (𝒫 2 (M),W 2 ), Memoirs of the American Mathematical Society, 1018, American Mathematical Society, 2012, 154 pages | DOI | Zbl

[16] Nicola Gigli; Luca Tamanini Benamou-Brenier and duality formulas for the entropic cost on RCD * (K,N) spaces, Probab. Theory Relat. Fields, Volume 176 (2020) no. 1-2, pp. 1-34 | DOI | MR

[17] Nicola Gigli; Luca Tamanini Second order differentiation formula on RCD * (K,N) spaces, J. Eur. Math. Soc., Volume 23 (2021) no. 5, pp. 1727-1795 | DOI | MR | Zbl

[18] Richard Jordan; David Kinderlehrer; Felix Otto The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1-17 | DOI | MR | Zbl

[19] Christian Léonard A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 4, pp. 1533-1574 | DOI | Zbl

[20] Peter Li; Shing Tung Yau On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201

[21] Felix Otto The geometry of dissipative evolution equations: The porous medium equation, Commun. Partial Differ. Equations, Volume 26 (2001) no. 1-2, pp. 101-174 | DOI | MR | Zbl

[22] Felix Otto; Cédric Villani Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400 | DOI | MR | Zbl

[23] Cédric Villani Optimal transport. Old and new., Springer, 2009, xxii+973 pages | DOI | Zbl

Cited by Sources: