Complement to Tautological classes on moduli spaces of hyper-Kähler manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 839-854.

In this note we prove the cohomological tautological conjecture on moduli spaces of K3 and K3 [2] -type hyper-Kähler manifolds. That this result holds was first asserted in [2]. However the proof given there contains a gap, see [3]. Here we give a more direct proof.

Dans cette note nous démontrons, dans sa version cohomologique, la conjecture tautologique pour les espaces de modules des variétés hyper-Kähleriennes de type K3 et K3 [2] . Ce théorème est l’un des deux résultats principaux de [2]. Cependant la démonstration qui y est donnée comporte un trou que nous ne savons pas comblé, voir [3]. Nous donnons ici une preuve plus directe.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1755

Nicolas Bergeron 1; Zhiyuan Li 2

1 ENS / PSL University, Département de Mathématiques et Applications, F-75005, Paris, France
2 Shanghai Center for Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433 China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_5_839_0,
     author = {Nicolas Bergeron and Zhiyuan Li},
     title = {Complement to {Tautological} classes on moduli spaces of {hyper-K\"ahler} manifolds},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {839--854},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {5},
     year = {2023},
     doi = {10.5802/afst.1755},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1755/}
}
TY  - JOUR
AU  - Nicolas Bergeron
AU  - Zhiyuan Li
TI  - Complement to Tautological classes on moduli spaces of hyper-Kähler manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 839
EP  - 854
VL  - 32
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1755/
DO  - 10.5802/afst.1755
LA  - en
ID  - AFST_2023_6_32_5_839_0
ER  - 
%0 Journal Article
%A Nicolas Bergeron
%A Zhiyuan Li
%T Complement to Tautological classes on moduli spaces of hyper-Kähler manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 839-854
%V 32
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1755/
%R 10.5802/afst.1755
%G en
%F AFST_2023_6_32_5_839_0
Nicolas Bergeron; Zhiyuan Li. Complement to Tautological classes on moduli spaces of hyper-Kähler manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 839-854. doi : 10.5802/afst.1755. https://afst.centre-mersenne.org/articles/10.5802/afst.1755/

[1] Thorsten Beckmann Derived categories of hyper-Kähler manifolds: extended Mukai vector and integral structure, Compos. Math., Volume 159 (2023) no. 1, pp. 109-152 | DOI | MR | Zbl

[2] Nicolas Bergeron; Zhiyuan Li Tautological classes on moduli spaces of hyper-Kähler manifolds, Duke Math. J., Volume 168 (2019) no. 7, pp. 1179-1230 | Zbl

[3] Nicolas Bergeron; Zhiyuan Li Tautological classes on moduli spaces of hyper-Kähler manifolds. Erratum, Duke Math. J., Volume 171 (2022) no. 1, pp. 243-245

[4] Nicolas Bergeron; Zhiyuan Li; John Millson; Colette Moeglin The Noether–Lefschetz conjecture and generalizations, Invent. Math., Volume 208 (2017) no. 2, pp. 501-552 | DOI | MR

[5] Mark Andrea A. de Cataldo Hodge-theoretic splitting mechanisms for projective maps, J. Singul., Volume 7 (2013), pp. 134-156 | MR

[6] Claire Voisin Chow rings and decomposition theorems for families of K3 surfaces and Calabi–Yau hypersurfaces, Geom. Topol., Volume 16 (2012) no. 1, pp. 433-473 | DOI | MR | Zbl

[7] Yuri G. Zarkhin Hodge groups of K3 surfaces, J. Reine Angew. Math., Volume 341 (1983), pp. 193-220 | MR

Cited by Sources: