A Nonvanishing Conjecture for Cotangent Bundles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 855-892.

In this paper we study the positivity of the cotangent bundle of projective manifolds. We conjecture that the cotangent bundle is pseudoeffective if and only the manifold has non-zero symmetric differentials. We confirm this conjecture for most projective surfaces that are not of general type.

Dans ce papier nous étudions la positivité du fibré cotangent des variétés projective lisses. Nous conjecturons que le fibré cotangent est pseudoeffectif si et seulement si la variété possède des formes holomorphes symétriques non-nulles. Nous montrons cette conjecture pour la plupart des surfaces projectives lisses qui ne sont pas de type général.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1756
Classification: 14J32, 37F75, 14E30
Keywords: MMP, minimal models, positivity of vector bundles, nonvanishing conjecture, symmetric differentials

Andreas Höring 1; Thomas Peternell 2

1 Université Côte d’Azur, CNRS, LJAD, France, Institut universitaire de France
2 Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_5_855_0,
     author = {Andreas H\"oring and Thomas Peternell},
     title = {A {Nonvanishing} {Conjecture} for {Cotangent} {Bundles}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {855--892},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {5},
     year = {2023},
     doi = {10.5802/afst.1756},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1756/}
}
TY  - JOUR
AU  - Andreas Höring
AU  - Thomas Peternell
TI  - A Nonvanishing Conjecture for Cotangent Bundles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 855
EP  - 892
VL  - 32
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1756/
DO  - 10.5802/afst.1756
LA  - en
ID  - AFST_2023_6_32_5_855_0
ER  - 
%0 Journal Article
%A Andreas Höring
%A Thomas Peternell
%T A Nonvanishing Conjecture for Cotangent Bundles
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 855-892
%V 32
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1756/
%R 10.5802/afst.1756
%G en
%F AFST_2023_6_32_5_855_0
Andreas Höring; Thomas Peternell. A Nonvanishing Conjecture for Cotangent Bundles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 855-892. doi : 10.5802/afst.1756. https://afst.centre-mersenne.org/articles/10.5802/afst.1756/

[1] Vincenzo Ancona; Giuseppe Tomassini Modifications analytiques, Lecture Notes in Mathematics, 943, Springer, 1982, iv+120 pages | DOI | MR

[2] Marco Andreatta; Jarosław A. Wiśniewski A view on contractions of higher-dimensional varieties, Algebraic geometry—Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 153-183 | DOI | MR | Zbl

[3] Fabrizio Anella Rational curves on fibered varieties, Math. Z., Volume 298 (2021) no. 3-4, pp. 1097-1111 | DOI | MR | Zbl

[4] Wolf P. Barth; Klaus Hulek; Chris A. M. Peters; Antonius Van de Ven Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004, xii+436 pages | DOI | MR

[5] Thomas Bauer A simple proof for the existence of Zariski decompositions on surfaces, J. Algebr. Geom., Volume 18 (2009) no. 4, pp. 789-793 | DOI | MR

[6] Rémi Bignalet-Cazalet Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité, Ph. D. Thesis, Institut de Mathématiques de Bourgogne (Dijon) (2018)

[7] Caucher Birkar; Paolo Cascini; Christopher D. Hacon; James McKernan Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl

[8] Sébastien Boucksom Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl

[9] Sébastien Boucksom; Jean-Pierre Demailly; Mihai Păun; Thomas Peternell The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013), pp. 201-248 | DOI

[10] Damian Brotbek Hyperbolicity related problems for complete intersection varieties, Compos. Math., Volume 150 (2014) no. 3, pp. 369-395 | DOI | MR | Zbl

[11] Nils Bruin; Jordan Thomas; Anthony Varilly-Alvarado Explicit computation of symmetric differentials and its application to quasi-hyperbolicity, Algebra Number Theory, Volume 16 (2022) no. 6, pp. 1377-1405 | DOI

[12] Yohan Brunebarbe; Bruno Klingler; Burt Totaro Symmetric differentials and the fundamental group, Duke Math. J., Volume 162 (2013) no. 14, pp. 2797-2813 | DOI | MR

[13] Marco Brunella A positivity property for foliations on compact Kähler manifolds, Int. J. Math., Volume 17 (2006) no. 1, pp. 35-43 | DOI | MR

[14] Frédéric Campana Negativity of compact curves in infinite covers of projective surfaces, J. Algebr. Geom., Volume 7 (1998) no. 4, pp. 673-693 | MR

[15] Frédéric Campana Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR

[16] Frédéric Campana Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, Volume 10 (2011) no. 4, pp. 809-934 | DOI | MR | Zbl

[17] Frédéric Campana; Jean-Pierre Demailly; Thomas Peternell Rationally connected manifolds and semipositivity of the Ricci curvature, Recent advances in algebraic geometry (London Mathematical Society Lecture Note Series), Volume 417, Cambridge University Press, 2015, pp. 71-91 | DOI | MR | Zbl

[18] David A. Cox; Steven Zucker Intersection numbers of sections of elliptic surfaces, Invent. Math., Volume 53 (1979) no. 1, pp. 1-44 | DOI | MR

[19] Olivier Debarre Higher-dimensional algebraic geometry, Universitext, Springer, 2001, xiv+233 pages | MR

[20] Jean-Pierre Demailly; Thomas Peternell; Michael Schneider Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl

[21] Stéphane Druel A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018) no. 1, pp. 245-296 | DOI | MR | Zbl

[22] Hershel M. Farkas; Irwin Kra Riemann surfaces, Graduate Texts in Mathematics, 71, Springer, 1980, xi+337 pages | DOI | MR

[23] Cécile Gachet Positivity of the cotangent sheaf of singular Calabi–Yau varieties, Math. Res. Lett. (2022) no. 2, pp. 339-371 | DOI | MR

[24] Tom Graber; Joe Harris; Jason Starr Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, p. 57-67 (electronic) | DOI | MR

[25] Daniel Greb; Stefan Kebekus; Sándor J. Kovács; Thomas Peternell Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 114, pp. 87-169 | DOI | Numdam | MR

[26] Daniel Greb; Stefan Kebekus; Thomas Peternell Etale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016) no. 10, pp. 1965-2004 | DOI | MR

[27] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR

[28] Andreas Höring; Jie Liu; Feng Shao Examples of Fano manifolds with non-pseudoeffective tangent bundle, J. Lond. Math. Soc., Volume 106 (2022) no. 1, pp. 27-59 | DOI | MR

[29] Andreas Höring; Thomas Peternell Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | MR

[30] János Kollár Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1996, viii+320 pages | DOI | MR

[31] János Kollár; Shigefumi Mori Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti) | DOI | MR

[32] Robert Lazarsfeld Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | MR

[33] Artibano Micali Sur les algèbres universelles, Ann. Inst. Fourier, Volume 14 (1964) no. 2, pp. 33-87 | DOI | Numdam | MR

[34] Rick Miranda The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, ETS Editrice, 1989, vi+108 pages | MR

[35] Noboru Nakayama Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages | MR

[36] Fumio Sakai Symmetric powers of the cotangent bundle and classification of algebraic varieties, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) (Lecture Notes in Mathematics), Volume 732, Springer, 1979, pp. 545-563 | DOI | MR | Zbl

[37] Fernando Serrano Isotrivial fibred surfaces, Ann. Mat. Pura Appl., Volume 171 (1996), pp. 63-81 | DOI | MR | Zbl

[38] Kenji Ueno Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, 439, Springer, 1975, xix+278 pages (notes written in collaboration with P. Cherenack) | DOI | MR

Cited by Sources: