Let be a compact Kähler fourfold with klt singularities and vanishing first Chern class, smooth in codimension two. We show that admits a Beauville–Bogomolov decomposition: a finite quasi-étale cover of splits as a product of a complex torus and singular Calabi–Yau and irreducible holomorphic symplectic varieties. We also prove that has small projective deformations and the fundamental group of is projective. To obtain these results, we propose and study a new version of the Lipman–Zariski conjecture.
Soit une variété kählérienne compacte de dimension quatre, avec des singularités klt et première classe de Chern nulle, lisse en codimension deux. Nous montrons que admet une decomposition de Beauville–Bogomolov : à un revêtement quasi-étale fini près, est un produit d’un tore complexe et des variétés singulières de Calabi–Yau et holomorphes symplectiques irréductibles. Nous prouvons aussi que admet des deformations projectives petites et que le groupe fondamental de est projective. Pour obtenir ces resultats, nous proposons et étudions une nouvelle version de la conjecture de Lipman–Zariski.
Accepted:
Published online:
Keywords: Kähler spaces, klt singularities, vanishing first Chern class, unobstructed deformations, decomposition theorem
Patrick Graf 1
@article{AFST_2023_6_32_5_893_0, author = {Patrick Graf}, title = {A decomposition theorem for singular {K\"ahler} spaces with trivial first {Chern} class of dimension at most four}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {893--909}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {5}, year = {2023}, doi = {10.5802/afst.1757}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1757/} }
TY - JOUR AU - Patrick Graf TI - A decomposition theorem for singular Kähler spaces with trivial first Chern class of dimension at most four JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 893 EP - 909 VL - 32 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1757/ DO - 10.5802/afst.1757 LA - en ID - AFST_2023_6_32_5_893_0 ER -
%0 Journal Article %A Patrick Graf %T A decomposition theorem for singular Kähler spaces with trivial first Chern class of dimension at most four %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 893-909 %V 32 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1757/ %R 10.5802/afst.1757 %G en %F AFST_2023_6_32_5_893_0
Patrick Graf. A decomposition theorem for singular Kähler spaces with trivial first Chern class of dimension at most four. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 893-909. doi : 10.5802/afst.1757. https://afst.centre-mersenne.org/articles/10.5802/afst.1757/
[1] Lie group actions in complex analysis, Aspects of Mathematics, E27, Vieweg & Sohn, 1995 | DOI | MR | Zbl
[2] Fundamental Groups of Compact Kähler Manifolds, Mathematical Surveys and Monographs, 44, American Mathematical Society, 1996 | DOI
[3] Algebraic approximation and the decomposition theorem for Kähler Calabi–Yau varieties, Invent. Math., Volume 228 (2022), pp. 1255-1308 | DOI
[4] The global moduli theory of symplectic varieties (2020) | arXiv
[5] Algebraic methods in the global theory of complex spaces, John Wiley & Sons, 1976
[6] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 755-782 | Zbl
[7] Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR, Volume 243 (1978) no. 5, pp. 1101-1104
[8] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR
[9] Kähler spaces with zero first Chern class: Bochner principle, fundamental groups, and the Kodaira problem, J. Reine Angew. Math., Volume 2022 (2022) no. 786, pp. 245-275 | DOI | Zbl
[10] Seminormal complex spaces, Several complex variables VII. Sheaf-theoretical methods in complex analysis (Encyclopaedia of Mathematical Sciences), Volume 74, Springer, 1994, pp. 183-220 | DOI | MR | Zbl
[11] The Zariski–Lipman conjecture for log canonical spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 4, pp. 827-835 | DOI | MR
[12] A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018) no. 1, pp. 245-296 | DOI | MR | Zbl
[13] Algebraic approximation of Kähler threefolds of Kodaira dimension zero, Math. Ann., Volume 371 (2018) no. 1-2, pp. 487-516 | DOI | MR
[14] An optimal extension theorem for -forms and the Lipman–Zariski Conjecture, Doc. Math., Volume 19 (2014), pp. 815-830 | DOI | MR
[15] The Kodaira problem for Kähler spaces with vanishing first Chern class, Forum Math. Sigma, Volume 9 (2021), e24, 15 pages | Zbl
[16] varieties with trivial canonical class: holonomy, differential forms, and fundamental groups, Geom. Topol., Volume 23 (2019) no. 4, pp. 2051-2124 | DOI | MR | Zbl
[17] On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | MR | Zbl
[18] Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | MR
[19] Eine Künnethformel für Fréchetgarben, Math. Z., Volume 97 (1967), pp. 158-168 | DOI | Zbl
[20] Das topologische Tensorprodukt kohärenter analytischer Garben, Math. Z., Volume 106 (1968), pp. 273-292 | DOI | MR
[21] Holomorphic functions of several variables. An introduction to the fundamental theory, De Gruyter Studies in Mathematics, 3, Walter de Gruyter, 1983 (with the assistance of Gottfried Barthel, translated from the German by Michael Bridgland) | DOI
[22] Pull-back morphisms for reflexive differential forms, Adv. Math., Volume 245 (2013), pp. 78-112 | DOI | MR
[23] Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities, J. Am. Math. Soc., Volume 34 (2021) no. 2, pp. 315-368 | DOI | MR | Zbl
[24] Vector bundles on complex projective spaces, Progress in Mathematics, 3, Birkhäuser, 1980
[25] A certain problem for finitely generated groups, Dokl. Akad. Nauk SSSR, Volume 12 (1968), pp. 492-494 | MR
[26] Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric, Mathematical aspects of string theory (San Diego, 1986) (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1987, pp. 629-646 | Zbl
[27] The Weil–Petersson geometry of the moduli space of (Calabi–Yau) manifolds. I, Commun. Math. Phys., Volume 126 (1989) no. 2, pp. 325-346 | DOI | MR
[28] Equisingular resolution with snc fibers and combinatorial type of varieties (2016) | arXiv
Cited by Sources: