A decomposition theorem for singular Kähler spaces with trivial first Chern class of dimension at most four
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 893-909.

Let X be a compact Kähler fourfold with klt singularities and vanishing first Chern class, smooth in codimension two. We show that X admits a Beauville–Bogomolov decomposition: a finite quasi-étale cover of X splits as a product of a complex torus and singular Calabi–Yau and irreducible holomorphic symplectic varieties. We also prove that X has small projective deformations and the fundamental group of X is projective. To obtain these results, we propose and study a new version of the Lipman–Zariski conjecture.

Soit X une variété kählérienne compacte de dimension quatre, avec des singularités klt et première classe de Chern nulle, lisse en codimension deux. Nous montrons que X admet une decomposition de Beauville–Bogomolov : à un revêtement quasi-étale fini près, X est un produit d’un tore complexe et des variétés singulières de Calabi–Yau et holomorphes symplectiques irréductibles. Nous prouvons aussi que X admet des deformations projectives petites et que le groupe fondamental de X est projective. Pour obtenir ces resultats, nous proposons et étudions une nouvelle version de la conjecture de Lipman–Zariski.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1757
Classification: 32J27, 14E30, 14J32
Keywords: Kähler spaces, klt singularities, vanishing first Chern class, unobstructed deformations, decomposition theorem

Patrick Graf 1

1 Fachbereich 08, Johannes-Gutenberg-Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_5_893_0,
     author = {Patrick Graf},
     title = {A decomposition theorem for singular {K\"ahler}  spaces with trivial first {Chern} class  of dimension at most four},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {893--909},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {5},
     year = {2023},
     doi = {10.5802/afst.1757},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1757/}
}
TY  - JOUR
AU  - Patrick Graf
TI  - A decomposition theorem for singular Kähler  spaces with trivial first Chern class  of dimension at most four
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 893
EP  - 909
VL  - 32
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1757/
DO  - 10.5802/afst.1757
LA  - en
ID  - AFST_2023_6_32_5_893_0
ER  - 
%0 Journal Article
%A Patrick Graf
%T A decomposition theorem for singular Kähler  spaces with trivial first Chern class  of dimension at most four
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 893-909
%V 32
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1757/
%R 10.5802/afst.1757
%G en
%F AFST_2023_6_32_5_893_0
Patrick Graf. A decomposition theorem for singular Kähler  spaces with trivial first Chern class  of dimension at most four. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 893-909. doi : 10.5802/afst.1757. https://afst.centre-mersenne.org/articles/10.5802/afst.1757/

[1] Dmitri N. Akhiezer Lie group actions in complex analysis, Aspects of Mathematics, E27, Vieweg & Sohn, 1995 | DOI | MR | Zbl

[2] Jaume Amorós; Marc Burger; A. Corlette; Dieter Kotschick; Domingo Toledo Fundamental Groups of Compact Kähler Manifolds, Mathematical Surveys and Monographs, 44, American Mathematical Society, 1996 | DOI

[3] Benjamin Bakker; Henri Guenancia; Christian Lehn Algebraic approximation and the decomposition theorem for Kähler Calabi–Yau varieties, Invent. Math., Volume 228 (2022), pp. 1255-1308 | DOI

[4] Benjamin Bakker; Christian Lehn The global moduli theory of symplectic varieties (2020) | arXiv

[5] Constantin Bănică; Octavian Stănăşilă Algebraic methods in the global theory of complex spaces, John Wiley & Sons, 1976

[6] Arnaud Beauville Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 755-782 | Zbl

[7] Fedor A. Bogomolov Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR, Volume 243 (1978) no. 5, pp. 1101-1104

[8] Frédéric Campana Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR

[9] Benoît Claudon; Patrick Graf; Henri Guenancia; Philipp Naumann Kähler spaces with zero first Chern class: Bochner principle, fundamental groups, and the Kodaira problem, J. Reine Angew. Math., Volume 2022 (2022) no. 786, pp. 245-275 | DOI | Zbl

[10] Gerd-Eberhard Dethloff; Hans Grauert Seminormal complex spaces, Several complex variables VII. Sheaf-theoretical methods in complex analysis (Encyclopaedia of Mathematical Sciences), Volume 74, Springer, 1994, pp. 183-220 | DOI | MR | Zbl

[11] Stéphane Druel The Zariski–Lipman conjecture for log canonical spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 4, pp. 827-835 | DOI | MR

[12] Stéphane Druel A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018) no. 1, pp. 245-296 | DOI | MR | Zbl

[13] Patrick Graf Algebraic approximation of Kähler threefolds of Kodaira dimension zero, Math. Ann., Volume 371 (2018) no. 1-2, pp. 487-516 | DOI | MR

[14] Patrick Graf; Sándor J. Kovács An optimal extension theorem for 1-forms and the Lipman–Zariski Conjecture, Doc. Math., Volume 19 (2014), pp. 815-830 | DOI | MR

[15] Patrick Graf; Martin Schwald The Kodaira problem for Kähler spaces with vanishing first Chern class, Forum Math. Sigma, Volume 9 (2021), e24, 15 pages | Zbl

[16] Daniel Greb; Henri Guenancia; Stefan Kebekus klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups, Geom. Topol., Volume 23 (2019) no. 4, pp. 2051-2124 | DOI | MR | Zbl

[17] Christopher D. Hacon; James McKernan On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | MR | Zbl

[18] Andreas Höring; Thomas Peternell Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | MR

[19] Ludger Kaup Eine Künnethformel für Fréchetgarben, Math. Z., Volume 97 (1967), pp. 158-168 | DOI | Zbl

[20] Ludger Kaup Das topologische Tensorprodukt kohärenter analytischer Garben, Math. Z., Volume 106 (1968), pp. 273-292 | DOI | MR

[21] Ludger Kaup; Burchard Kaup Holomorphic functions of several variables. An introduction to the fundamental theory, De Gruyter Studies in Mathematics, 3, Walter de Gruyter, 1983 (with the assistance of Gottfried Barthel, translated from the German by Michael Bridgland) | DOI

[22] Stefan Kebekus Pull-back morphisms for reflexive differential forms, Adv. Math., Volume 245 (2013), pp. 78-112 | DOI | MR

[23] Stefan Kebekus; Christian Schnell Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities, J. Am. Math. Soc., Volume 34 (2021) no. 2, pp. 315-368 | DOI | MR | Zbl

[24] Christian Okonek; Michael Schneider; Heinz Spindler Vector bundles on complex projective spaces, Progress in Mathematics, 3, Birkhäuser, 1980

[25] Vladimir P. Platonov A certain problem for finitely generated groups, Dokl. Akad. Nauk SSSR, Volume 12 (1968), pp. 492-494 | MR

[26] Gang Tian Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric, Mathematical aspects of string theory (San Diego, 1986) (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1987, pp. 629-646 | Zbl

[27] Andrey N. Todorov The Weil–Petersson geometry of the moduli space of SU (n3) (Calabi–Yau) manifolds. I, Commun. Math. Phys., Volume 126 (1989) no. 2, pp. 325-346 | DOI | MR

[28] Jarosław Włodarczyk Equisingular resolution with snc fibers and combinatorial type of varieties (2016) | arXiv

Cited by Sources: