We consider fractional Sobolev classes of maps defined in high dimensional domains and with values into compact smooth manifolds. The problem of strong density of smooth maps for lower than one is discussed. An equivalent energy convergence defined through extensions in suitable weighted Sobolev spaces is exploited to obtain a new proof of the density of maps with “small” singular set. Moreover, a homotopy-type property is analyzed, yielding to a characterization of approximable maps through topological arguments. We then focus on maps taking values into high dimensional spheres, where homological tools allow to describe the singular set. For suitable values of the product , in fact, strong density of smooth maps is characterized by the triviality of the current of the singularities.
On considère des classes de Sobolev fractionnaires d’applications définies dans des domaines de grande dimension et à valeurs dans des variétés régulières compactes. Le problème de la forte densité des applications régulières pour inférieur à un est discuté. Une convergence d’énergie équivalente définie grâce à des extensions dans des espaces de Sobolev à poids appropriés est exploitée pour obtenir une nouvelle preuve de la densité des applications avec un « petit » ensemble singulier. De plus, une propriété de type homotopie est analysée, aboutissant à une caractérisation des applications approximables par des arguments topologiques. Nous nous concentrons ensuite sur des applications prenant des valeurs dans des sphères de grande dimension, où les outils homologiques permettent de décrire l’ensemble singulier. Pour des valeurs appropriées du produit , la forte densité des applications régulières se caractérise en effet par la trivialité du courant des singularités.
Accepted:
Published online:
Keywords: fractional Sobolev spaces, weighted Sobolev spaces, maps between manifolds, singularities
Mot clés : espaces de Sobolev fractionnaires, espaces de Sobolev a poids, applications entre variétés, singularités
Domenico Mucci 1
@article{AFST_2024_6_33_3_581_0, author = {Domenico Mucci}, title = {Strong density results for manifold valued fractional {Sobolev} maps}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {581--610}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {3}, year = {2024}, doi = {10.5802/afst.1782}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1782/} }
TY - JOUR AU - Domenico Mucci TI - Strong density results for manifold valued fractional Sobolev maps JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 581 EP - 610 VL - 33 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1782/ DO - 10.5802/afst.1782 LA - en ID - AFST_2024_6_33_3_581_0 ER -
%0 Journal Article %A Domenico Mucci %T Strong density results for manifold valued fractional Sobolev maps %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 581-610 %V 33 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1782/ %R 10.5802/afst.1782 %G en %F AFST_2024_6_33_3_581_0
Domenico Mucci. Strong density results for manifold valued fractional Sobolev maps. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 581-610. doi : 10.5802/afst.1782. https://afst.centre-mersenne.org/articles/10.5802/afst.1782/
[1] Co-area, liquid crystals, and minimal surfaces, Partial differential equations (Tianjin, 1986) (Lecture Notes in Mathematics), Volume 1306, Springer, 1986, pp. 1-22 | Zbl
[2] The approximation problem for Sobolev maps between manifolds, Acta Math., Volume 167 (1992) no. 3-4, pp. 153-206
[3] Approximations in trace spaces defined between manifolds, Nonlinear Anal., Theory Methods Appl., Volume 24 (1995) no. 1, pp. 121-130 | DOI | Zbl
[4] Lifting, degree and distributional jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005) no. 4, pp. 529-551 | DOI | Zbl
[5] Prescribing the Jacobian in critical spaces, J. Anal. Math., Volume 122 (2014), pp. 317-373 | DOI | Zbl
[6] Density of smooth maps for fractional Sobolev spaces into simply connected manifolds when , Confluentes Math., Volume 5 (2013) no. 2, pp. 3-22 | DOI | Zbl
[7] Strong approximation of fractional Sobolev spaces, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 133-153 | DOI | Zbl
[8] Density in , J. Funct. Anal., Volume 269 (2015) no. 7, pp. 2045-2109 | DOI | Zbl
[9] Degree theory and BMO. I: Compact manifolds without boundaries, Sel. Math., New Ser., Volume 1 (1995) no. 2, pp. 197-263 | DOI | Zbl
[10] On weighted Poincaré inequalities, Math. Nachr., Volume 180 (1996), pp. 15-41 | Zbl
[11] Cartesian currents in the calculus of variations, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 37, Springer, 1998 | DOI
[12] Density results for the energy of maps into a manifold, Math. Z., Volume 251 (2005) no. 3, pp. 535-549 | DOI | Zbl
[13] On sequences of maps into a manifold with equibounded -energies, J. Funct. Anal., Volume 225 (2005) no. 1, pp. 94-146 | DOI | Zbl
[14] A remark on the Jacobians, Commun. Contemp. Math., Volume 2 (2000) no. 1, pp. 35-46 | DOI | Zbl
[15] Topology of Sobolev mappings. II, Acta Math., Volume 191 (2003) no. 1, pp. 55-107 | DOI | Zbl
[16] Connecting topological Hopf singularities, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 2, pp. 287-344 | Numdam | Zbl
[17] Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in nonlinear partial differential equations in honor of Haïm Brezis (Contemporary Mathematics), Volume 446, American Mathematical Society, 2007, pp. 413-436 | Zbl
[18] Traces of weighted Sobolev spaces. Old and new, Nonlinear Anal., Theory Methods Appl., Volume 119 (2015), pp. 354-381 | DOI | Zbl
[19] Strong density results in trace spaces of maps between manifolds, Manuscr. Math., Volume 128 (2009) no. 4, pp. 421-441 | DOI | Zbl
[20] The homological singularities of maps in trace spaces between manifolds, Math. Z., Volume 266 (2010) no. 4, pp. 817-849 | DOI | Zbl
[21] The relaxed energy of fractional Sobolev maps with values into the circle, J. Funct. Anal., Volume 287 (2024) no. 7, 110544 | Zbl
[22] A regularity theory for harmonic maps, J. Differ. Geom., Volume 17 (1982), pp. 307-335 | Zbl
[23] Infima of energy functionals in homotopy classes, J. Differ. Geom., Volume 23 (1986), pp. 127-142 | Zbl
Cited by Sources: