Strong density results for manifold valued fractional Sobolev maps
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 581-610.

We consider fractional Sobolev classes W s,p of maps defined in high dimensional domains and with values into compact smooth manifolds. The problem of strong density of smooth maps for s lower than one is discussed. An equivalent energy convergence defined through extensions in suitable weighted Sobolev spaces is exploited to obtain a new proof of the density of maps with “small” singular set. Moreover, a homotopy-type property is analyzed, yielding to a characterization of approximable maps through topological arguments. We then focus on maps taking values into high dimensional spheres, where homological tools allow to describe the singular set. For suitable values of the product sp, in fact, strong density of smooth maps is characterized by the triviality of the current of the singularities.

On considère des classes de Sobolev fractionnaires W s,p d’applications définies dans des domaines de grande dimension et à valeurs dans des variétés régulières compactes. Le problème de la forte densité des applications régulières pour s inférieur à un est discuté. Une convergence d’énergie équivalente définie grâce à des extensions dans des espaces de Sobolev à poids appropriés est exploitée pour obtenir une nouvelle preuve de la densité des applications avec un « petit » ensemble singulier. De plus, une propriété de type homotopie est analysée, aboutissant à une caractérisation des applications approximables par des arguments topologiques. Nous nous concentrons ensuite sur des applications prenant des valeurs dans des sphères de grande dimension, où les outils homologiques permettent de décrire l’ensemble singulier. Pour des valeurs appropriées du produit sp, la forte densité des applications régulières se caractérise en effet par la trivialité du courant des singularités.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1782
Classification: 49Q20, 46E35, 28A75, 58D15
Keywords: fractional Sobolev spaces, weighted Sobolev spaces, maps between manifolds, singularities
Mot clés : espaces de Sobolev fractionnaires, espaces de Sobolev a poids, applications entre variétés, singularités

Domenico Mucci 1

1 Università di Parma DSMFI Parco Area delle Scienze 53/A I-43124 Parma (Italy)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_3_581_0,
     author = {Domenico Mucci},
     title = {Strong density results for manifold valued  fractional {Sobolev} maps},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {581--610},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {3},
     year = {2024},
     doi = {10.5802/afst.1782},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1782/}
}
TY  - JOUR
AU  - Domenico Mucci
TI  - Strong density results for manifold valued  fractional Sobolev maps
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 581
EP  - 610
VL  - 33
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1782/
DO  - 10.5802/afst.1782
LA  - en
ID  - AFST_2024_6_33_3_581_0
ER  - 
%0 Journal Article
%A Domenico Mucci
%T Strong density results for manifold valued  fractional Sobolev maps
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 581-610
%V 33
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1782/
%R 10.5802/afst.1782
%G en
%F AFST_2024_6_33_3_581_0
Domenico Mucci. Strong density results for manifold valued  fractional Sobolev maps. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 581-610. doi : 10.5802/afst.1782. https://afst.centre-mersenne.org/articles/10.5802/afst.1782/

[1] Frederick Almgren; William Browder; Elliot H. Lieb Co-area, liquid crystals, and minimal surfaces, Partial differential equations (Tianjin, 1986) (Lecture Notes in Mathematics), Volume 1306, Springer, 1986, pp. 1-22 | Zbl

[2] Fabrice Bethuel The approximation problem for Sobolev maps between manifolds, Acta Math., Volume 167 (1992) no. 3-4, pp. 153-206

[3] Fabrice Bethuel Approximations in trace spaces defined between manifolds, Nonlinear Anal., Theory Methods Appl., Volume 24 (1995) no. 1, pp. 121-130 | DOI | Zbl

[4] Jean Bourgain; Haïm Brezis; Petru Mironescu Lifting, degree and distributional jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005) no. 4, pp. 529-551 | DOI | Zbl

[5] Pierre Bousquet; Petru Mironescu Prescribing the Jacobian in critical spaces, J. Anal. Math., Volume 122 (2014), pp. 317-373 | DOI | Zbl

[6] Pierre Bousquet; Augusto C. Ponce; Jean van Schaftingen Density of smooth maps for fractional Sobolev spaces W s,p into simply connected manifolds when s1, Confluentes Math., Volume 5 (2013) no. 2, pp. 3-22 | DOI | Zbl

[7] Pierre Bousquet; Augusto C. Ponce; Jean van Schaftingen Strong approximation of fractional Sobolev spaces, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 133-153 | DOI | Zbl

[8] Haïm Brezis; Petru Mironescu Density in W s,p (Ω;N), J. Funct. Anal., Volume 269 (2015) no. 7, pp. 2045-2109 | DOI | Zbl

[9] Haïm Brézis; Louis Nirenberg Degree theory and BMO. I: Compact manifolds without boundaries, Sel. Math., New Ser., Volume 1 (1995) no. 2, pp. 197-263 | DOI | Zbl

[10] Andrea Cianchi; David E. Edmunds; Petr Gurka On weighted Poincaré inequalities, Math. Nachr., Volume 180 (1996), pp. 15-41 | Zbl

[11] Mariano Giaquinta; Giuseppe Modica; Jiří Souček Cartesian currents in the calculus of variations, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 37, Springer, 1998 | DOI

[12] Mariano Giaquinta; Domenico Mucci Density results for the W 1/2 energy of maps into a manifold, Math. Z., Volume 251 (2005) no. 3, pp. 535-549 | DOI | Zbl

[13] Mariano Giaquinta; Domenico Mucci On sequences of maps into a manifold with equibounded W 1/2 -energies, J. Funct. Anal., Volume 225 (2005) no. 1, pp. 94-146 | DOI | Zbl

[14] Fengbo Hang; Fanghua Lin A remark on the Jacobians, Commun. Contemp. Math., Volume 2 (2000) no. 1, pp. 35-46 | DOI | Zbl

[15] Fengbo Hang; Fanghua Lin Topology of Sobolev mappings. II, Acta Math., Volume 191 (2003) no. 1, pp. 55-107 | DOI | Zbl

[16] Robert Hardt; Tristan Riviére Connecting topological Hopf singularities, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 2, pp. 287-344 | Numdam | Zbl

[17] Petru Mironescu Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in nonlinear partial differential equations in honor of Haïm Brezis (Contemporary Mathematics), Volume 446, American Mathematical Society, 2007, pp. 413-436 | Zbl

[18] Petru Mironescu; Emmanuel Russ Traces of weighted Sobolev spaces. Old and new, Nonlinear Anal., Theory Methods Appl., Volume 119 (2015), pp. 354-381 | DOI | Zbl

[19] Domenico Mucci Strong density results in trace spaces of maps between manifolds, Manuscr. Math., Volume 128 (2009) no. 4, pp. 421-441 | DOI | Zbl

[20] Domenico Mucci The homological singularities of maps in trace spaces between manifolds, Math. Z., Volume 266 (2010) no. 4, pp. 817-849 | DOI | Zbl

[21] Domenico Mucci The relaxed energy of fractional Sobolev maps with values into the circle, J. Funct. Anal., Volume 287 (2024) no. 7, 110544 | Zbl

[22] Richard Schoen; Karen Uhlenbeck A regularity theory for harmonic maps, J. Differ. Geom., Volume 17 (1982), pp. 307-335 | Zbl

[23] Brian White Infima of energy functionals in homotopy classes, J. Differ. Geom., Volume 23 (1986), pp. 127-142 | Zbl

Cited by Sources: