Projectively flat log smooth pairs
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 611-645.

In this article, we study projective log smooth pairs with numerically flat normalized logarithmic tangent bundle. Generalizing works of Jahnke–Radloff and Greb–Kebekus–Peternell, we show that, passing to an appropriate finite cover and up to isomorphism, these are the projective spaces or the log smooth pairs with numerically flat logarithmic tangent bundles blown-up at finitely many points away from the boundary. On the other hand, the structure of log smooth pairs with numerically flat logarithmic tangent bundle is well understood: they are toric fiber bundles over finite étale quotients of abelian varieties.

Dans cet article, nous étudions les paires log lisses dont le fibré tangent logarithmique normalisé est numériquement plat. Généralisant des travaux de Jahnke–Radloff et Greb–Kebekus–Peternell, nous montrons qu’un revêtement fini convenable d’une telle paire est isomorphe à un espace projectif ou à l’éclatement en un nombre fini de points hors du bord d’une paire log lisse dont le fibré tangent logarithmique est numériquement plat. La structure de ces dernières est par ailleurs bien comprise : ce sont des fibrés en variétés toriques sur des quotients étales de variétés abéliennes par des groupes finis.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1783
Classification: 32Q30, 32Q26, 14E20, 14E30, 53B10

Stéphane Druel 1

1 Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_3_611_0,
     author = {St\'ephane Druel},
     title = {Projectively flat log smooth pairs},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {611--645},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {3},
     year = {2024},
     doi = {10.5802/afst.1783},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1783/}
}
TY  - JOUR
AU  - Stéphane Druel
TI  - Projectively flat log smooth pairs
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 611
EP  - 645
VL  - 33
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1783/
DO  - 10.5802/afst.1783
LA  - en
ID  - AFST_2024_6_33_3_611_0
ER  - 
%0 Journal Article
%A Stéphane Druel
%T Projectively flat log smooth pairs
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 611-645
%V 33
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1783/
%R 10.5802/afst.1783
%G en
%F AFST_2024_6_33_3_611_0
Stéphane Druel. Projectively flat log smooth pairs. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 611-645. doi : 10.5802/afst.1783. https://afst.centre-mersenne.org/articles/10.5802/afst.1783/

[1] Carolina Araujo; Stéphane Druel On codimension 1 del Pezzo foliations on varieties with mild singularities, Math. Ann., Volume 360 (2014) no. 3-4, pp. 769-798 | DOI | Zbl

[2] Thomas Bauer; Frédéric Campana; Thomas Eckl; Stefan Kebekus; Thomas Peternell; Sławomir Rams; Tomasz Szemberg; Lorenz Wotzlaw A reduction map for nef line bundles, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 27-36 | DOI | Zbl

[3] Paul F. Baum; Raoul Bott On the zeroes of meromorphic vector-fields, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, 1970, pp. 29-47 | DOI | Zbl

[4] Sébastien Boucksom; Jean-Pierre Demailly; Mihai Păun; Thomas Peternell The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl

[5] Michel Brion Log homogeneous varieties, Proceedings of the XVIth Latin American Algebra Colloquium (Spanish) (Biblioteca de la Revista Matemática Iberoamericana), Revista Matemática Iberoamericana (2007), pp. 1-39 | Zbl

[6] Frédéric Campana; Benoît Claudon; Philippe Eyssidieux Représentations linéaires des groupes kählériens: factorisations et conjecture de Shafarevich linéaire, Compos. Math., Volume 151 (2015) no. 2, pp. 351-376 | DOI | Zbl

[7] Frédéric Campana; Vincent Koziarz; Mihai Păun Numerical character of the effectivity of adjoint line bundles, Ann. Inst. Fourier, Volume 62 (2012) no. 1, pp. 107-119 | DOI | Numdam | Zbl

[8] Olivier Debarre Higher-dimensional algebraic geometry, Universitext, Springer, 2001

[9] Jean-Pierre Demailly; Thomas Peternell; Michael Schneider Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | Zbl

[10] Stéphane Druel The Zariski-Lipman conjecture for log canonical spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 4, pp. 827-835 | DOI | Zbl

[11] Stéphane Druel; Federico Lo Bianco Numerical characterization of some toric fiber bundles, Math. Z., Volume 300 (2022) no. 4, pp. 3357-3382 | DOI | MR | Zbl

[12] Hélène Esnault; Eckart Viehweg Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser, 1992, vi+164 pages | DOI

[13] Osamu Fujino Non-vanishing theorem for log canonical pairs, J. Algebr. Geom., Volume 20 (2011) no. 4, pp. 771-783 | DOI | Zbl

[14] Osamu Fujino Notes on the weak positivity theorems, Algebraic varieties and automorphism groups (Advanced Studies in Pure Mathematics), Volume 75, Mathematical Society of Japan, 2017, pp. 73-118 | DOI | Zbl

[15] Osamu Fujino; Yoshinori Gongyo On canonical bundle formulas and subadjunctions, Mich. Math. J., Volume 61 (2012) no. 2, pp. 255-264 | DOI | Zbl

[16] Osamu Fujino; Yoshinori Gongyo Log pluricanonical representations and the abundance conjecture, Compos. Math., Volume 150 (2014) no. 4, pp. 593-620 | DOI | Zbl

[17] Tom Graber; Joe Harris; Jason Starr Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | Zbl

[18] Daniel Greb; Stefan Kebekus; Thomas Peternell Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016) no. 10, pp. 1965-2004 | DOI | Zbl

[19] Daniel Greb; Stefan Kebekus; Thomas Peternell Projectively flat klt varieties, J. Éc. Polytech., Math., Volume 8 (2021), pp. 1005-1036 | DOI | Numdam | Zbl

[20] Daniel Greb; Stefan Kebekus; Thomas Peternell Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, J. Algebraic Geom., Volume 31 (2022) no. 3, pp. 467-496 | DOI | MR | Zbl

[21] Daniel Greb; Stefan Kebekus; Thomas Peternell; Behrouz Taji Nonabelian Hodge theory for klt spaces and descent theorems for vector bundles, Compos. Math., Volume 155 (2019) no. 2, pp. 289-323 | DOI | Zbl

[22] Alexander Grothendieck Représentations linéaires et compactification profinie des groupes discrets, Manuscr. Math., Volume 2 (1970), pp. 375-396 | DOI | Zbl

[23] Henri Guenancia; Behrouz Taji Orbifold stability and Miyaoka–Yau Inequality for minimal pairs, Geom. Topol., Volume 26 (2022) no. 4, pp. 1435-1482 | DOI | MR | Zbl

[24] Christopher D. Hacon; James McKernan On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | DOI | Zbl

[25] Robin Hartshorne Stable reflexive sheaves, Math. Ann., Volume 254 (1980) no. 2, pp. 121-176 | DOI | Zbl

[26] Andreas Höring Uniruled varieties with split tangent bundle, Math. Z., Volume 256 (2007) no. 3, pp. 465-479 | DOI | Zbl

[27] Zhengyu Hu Log canonical pairs over varieties with maximal Albanese dimension, Pure Appl. Math. Q., Volume 12 (2016) no. 4, pp. 543-571 | DOI | Zbl

[28] Daniel Huybrechts; Manfred Lehn The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Vieweg & Sohn, 1997, xiv+269 pages | DOI

[29] Shigeru Iitaka Logarithmic forms of algebraic varieties, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 23 (1976) no. 3, pp. 525-544 | Zbl

[30] Masataka Iwai On the structure of a log smooth pair in the equality case of the Bogomolov–Gieseker inequality, Ann. Inst. Fourier (2024) (online first, https://doi.org/10.5802/aif.3651)

[31] Priska Jahnke; Ivo Radloff Semistability of restricted tangent bundles and a question of I. Biswas, Int. J. Math., Volume 24 (2013) no. 1, 1250122, 15 pages | DOI | Zbl

[32] Jean-Pierre Jouanolou Théorèmes de Bertini et applications, Progress in Mathematics, 42, Birkhäuser, 1983, ii+127 pages

[33] Yujiro Kawamata Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., Volume 363 (1985), pp. 1-46 | Zbl

[34] Yujiro Kawamata Pluricanonical systems on minimal algebraic varieties, Invent. Math., Volume 79 (1985) no. 3, pp. 567-588 | DOI | Zbl

[35] Stefan Kebekus; Sándor J. Kovács Families of canonically polarized varieties over surfaces, Invent. Math., Volume 172 (2008) no. 3, pp. 657-682 | DOI | Zbl

[36] Shoshichi Kobayashi Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, 1987, xii+305 pages | DOI

[37] Shoshichi Kobayashi; Takushiro Ochiai Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., Volume 13 (1973), pp. 31-47 | Zbl

[38] János Kollár Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | DOI | Zbl

[39] János Kollár Singularities of pairs, Algebraic geometry—Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | Zbl

[40] János Kollár; Shigefumi Mori Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI

[41] Steven Lu; Behrouz Taji A characterization of finite quotients of abelian varieties, Int. Math. Res. Not., Volume 2018 (2018) no. 1, pp. 292-319 | DOI | Zbl

[42] Zhao Hua Luo Factorization of birational morphisms of regular schemes, Math. Z., Volume 212 (1993) no. 4, pp. 505-509 | DOI | Zbl

[43] David Mumford Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 271-328 | DOI | Zbl

[44] Noboru Nakayama Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages

[45] Jean-Pierre Serre Morphismes universels et variété d’Albanese, Séminaire Claude Chevalley, Volume 4 (1958-1959) (talk:10)

[46] Carlos T. Simpson Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., Volume 75 (1992), pp. 5-95 | DOI | Numdam | Zbl

[47] Shigeharu Takayama Local simple connectedness of resolutions of log-terminal singularities, Int. J. Math., Volume 14 (2003) no. 8, pp. 825-836 | DOI | Zbl

[48] Kenji Ueno Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, 439, Springer, 1975, xix+278 pages (notes written in collaboration with P. Cherenack) | DOI

[49] Eckart Viehweg; Kang Zuo Arakelov inequalities and the uniformization of certain rigid Shimura varieties, J. Differ. Geom., Volume 77 (2007) no. 2, pp. 291-352 | Zbl

[50] Jörg Winkelmann On manifolds with trivial logarithmic tangent bundle, Osaka J. Math., Volume 41 (2004) no. 2, pp. 473-484 | Zbl

[51] J. A. Wiśniewski On Contractions of Extremal Rays of Fano manifolds, J. Reine Angew. Math., Volume 417 (1991), pp. 141-157 | Zbl

Cited by Sources: