In this article, we study projective log smooth pairs with numerically flat normalized logarithmic tangent bundle. Generalizing works of Jahnke–Radloff and Greb–Kebekus–Peternell, we show that, passing to an appropriate finite cover and up to isomorphism, these are the projective spaces or the log smooth pairs with numerically flat logarithmic tangent bundles blown-up at finitely many points away from the boundary. On the other hand, the structure of log smooth pairs with numerically flat logarithmic tangent bundle is well understood: they are toric fiber bundles over finite étale quotients of abelian varieties.
Dans cet article, nous étudions les paires log lisses dont le fibré tangent logarithmique normalisé est numériquement plat. Généralisant des travaux de Jahnke–Radloff et Greb–Kebekus–Peternell, nous montrons qu’un revêtement fini convenable d’une telle paire est isomorphe à un espace projectif ou à l’éclatement en un nombre fini de points hors du bord d’une paire log lisse dont le fibré tangent logarithmique est numériquement plat. La structure de ces dernières est par ailleurs bien comprise : ce sont des fibrés en variétés toriques sur des quotients étales de variétés abéliennes par des groupes finis.
Accepted:
Published online:
Stéphane Druel 1
@article{AFST_2024_6_33_3_611_0, author = {St\'ephane Druel}, title = {Projectively flat log smooth pairs}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {611--645}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {3}, year = {2024}, doi = {10.5802/afst.1783}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1783/} }
TY - JOUR AU - Stéphane Druel TI - Projectively flat log smooth pairs JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 611 EP - 645 VL - 33 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1783/ DO - 10.5802/afst.1783 LA - en ID - AFST_2024_6_33_3_611_0 ER -
%0 Journal Article %A Stéphane Druel %T Projectively flat log smooth pairs %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 611-645 %V 33 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1783/ %R 10.5802/afst.1783 %G en %F AFST_2024_6_33_3_611_0
Stéphane Druel. Projectively flat log smooth pairs. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 611-645. doi : 10.5802/afst.1783. https://afst.centre-mersenne.org/articles/10.5802/afst.1783/
[1] On codimension 1 del Pezzo foliations on varieties with mild singularities, Math. Ann., Volume 360 (2014) no. 3-4, pp. 769-798 | DOI | Zbl
[2] A reduction map for nef line bundles, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 27-36 | DOI | Zbl
[3] On the zeroes of meromorphic vector-fields, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, 1970, pp. 29-47 | DOI | Zbl
[4] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl
[5] Log homogeneous varieties, Proceedings of the XVIth Latin American Algebra Colloquium (Spanish) (Biblioteca de la Revista Matemática Iberoamericana), Revista Matemática Iberoamericana (2007), pp. 1-39 | Zbl
[6] Représentations linéaires des groupes kählériens: factorisations et conjecture de Shafarevich linéaire, Compos. Math., Volume 151 (2015) no. 2, pp. 351-376 | DOI | Zbl
[7] Numerical character of the effectivity of adjoint line bundles, Ann. Inst. Fourier, Volume 62 (2012) no. 1, pp. 107-119 | DOI | Numdam | Zbl
[8] Higher-dimensional algebraic geometry, Universitext, Springer, 2001
[9] Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | Zbl
[10] The Zariski-Lipman conjecture for log canonical spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 4, pp. 827-835 | DOI | Zbl
[11] Numerical characterization of some toric fiber bundles, Math. Z., Volume 300 (2022) no. 4, pp. 3357-3382 | DOI | MR | Zbl
[12] Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser, 1992, vi+164 pages | DOI
[13] Non-vanishing theorem for log canonical pairs, J. Algebr. Geom., Volume 20 (2011) no. 4, pp. 771-783 | DOI | Zbl
[14] Notes on the weak positivity theorems, Algebraic varieties and automorphism groups (Advanced Studies in Pure Mathematics), Volume 75, Mathematical Society of Japan, 2017, pp. 73-118 | DOI | Zbl
[15] On canonical bundle formulas and subadjunctions, Mich. Math. J., Volume 61 (2012) no. 2, pp. 255-264 | DOI | Zbl
[16] Log pluricanonical representations and the abundance conjecture, Compos. Math., Volume 150 (2014) no. 4, pp. 593-620 | DOI | Zbl
[17] Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | Zbl
[18] Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016) no. 10, pp. 1965-2004 | DOI | Zbl
[19] Projectively flat klt varieties, J. Éc. Polytech., Math., Volume 8 (2021), pp. 1005-1036 | DOI | Numdam | Zbl
[20] Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, J. Algebraic Geom., Volume 31 (2022) no. 3, pp. 467-496 | DOI | MR | Zbl
[21] Nonabelian Hodge theory for klt spaces and descent theorems for vector bundles, Compos. Math., Volume 155 (2019) no. 2, pp. 289-323 | DOI | Zbl
[22] Représentations linéaires et compactification profinie des groupes discrets, Manuscr. Math., Volume 2 (1970), pp. 375-396 | DOI | Zbl
[23] Orbifold stability and Miyaoka–Yau Inequality for minimal pairs, Geom. Topol., Volume 26 (2022) no. 4, pp. 1435-1482 | DOI | MR | Zbl
[24] On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | DOI | Zbl
[25] Stable reflexive sheaves, Math. Ann., Volume 254 (1980) no. 2, pp. 121-176 | DOI | Zbl
[26] Uniruled varieties with split tangent bundle, Math. Z., Volume 256 (2007) no. 3, pp. 465-479 | DOI | Zbl
[27] Log canonical pairs over varieties with maximal Albanese dimension, Pure Appl. Math. Q., Volume 12 (2016) no. 4, pp. 543-571 | DOI | Zbl
[28] The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Vieweg & Sohn, 1997, xiv+269 pages | DOI
[29] Logarithmic forms of algebraic varieties, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 23 (1976) no. 3, pp. 525-544 | Zbl
[30] On the structure of a log smooth pair in the equality case of the Bogomolov–Gieseker inequality, Ann. Inst. Fourier (2024) (online first, https://doi.org/10.5802/aif.3651)
[31] Semistability of restricted tangent bundles and a question of I. Biswas, Int. J. Math., Volume 24 (2013) no. 1, 1250122, 15 pages | DOI | Zbl
[32] Théorèmes de Bertini et applications, Progress in Mathematics, 42, Birkhäuser, 1983, ii+127 pages
[33] Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., Volume 363 (1985), pp. 1-46 | Zbl
[34] Pluricanonical systems on minimal algebraic varieties, Invent. Math., Volume 79 (1985) no. 3, pp. 567-588 | DOI | Zbl
[35] Families of canonically polarized varieties over surfaces, Invent. Math., Volume 172 (2008) no. 3, pp. 657-682 | DOI | Zbl
[36] Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, 1987, xii+305 pages | DOI
[37] Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., Volume 13 (1973), pp. 31-47 | Zbl
[38] Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | DOI | Zbl
[39] Singularities of pairs, Algebraic geometry—Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | Zbl
[40] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI
[41] A characterization of finite quotients of abelian varieties, Int. Math. Res. Not., Volume 2018 (2018) no. 1, pp. 292-319 | DOI | Zbl
[42] Factorization of birational morphisms of regular schemes, Math. Z., Volume 212 (1993) no. 4, pp. 505-509 | DOI | Zbl
[43] Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 271-328 | DOI | Zbl
[44] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages
[45] Morphismes universels et variété d’Albanese, Séminaire Claude Chevalley, Volume 4 (1958-1959) (talk:10)
[46] Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., Volume 75 (1992), pp. 5-95 | DOI | Numdam | Zbl
[47] Local simple connectedness of resolutions of log-terminal singularities, Int. J. Math., Volume 14 (2003) no. 8, pp. 825-836 | DOI | Zbl
[48] Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, 439, Springer, 1975, xix+278 pages (notes written in collaboration with P. Cherenack) | DOI
[49] Arakelov inequalities and the uniformization of certain rigid Shimura varieties, J. Differ. Geom., Volume 77 (2007) no. 2, pp. 291-352 | Zbl
[50] On manifolds with trivial logarithmic tangent bundle, Osaka J. Math., Volume 41 (2004) no. 2, pp. 473-484 | Zbl
[51] On Contractions of Extremal Rays of Fano manifolds, J. Reine Angew. Math., Volume 417 (1991), pp. 141-157 | Zbl
Cited by Sources: