The purpose this work is to address the question of existence and regularity of solutions to a class of nonlocal elliptic problems with variable-order fractional Laplace operator and whose behaviors are complicated by the presence of singular nonlinearities. First, we prove the existence of weak solutions for a large class of data, including measures in some cases. We also obtain additional regularity properties under suitable extra assumptions. Second, we show that, in the case of measures datum, existence analysis is strongly related to the fractional capacity associated to the fractional Sobolev spaces. As a consequence, we get the natural form of the adequate “fractional gradient” when dealing with the Hamilton–Jacobi fractional equation with nonlocal gradient term in the sense of Boccardo–Gallouët–Orsina decomposition Problem.
Le but de ce travail est d’étudier la question de l’existence et la régularité des solutions d’une classe de problèmes elliptiques non locaux gouvernés par l’opérateur de Laplace fractionnaire d’ordre variable, et dont le second membre est non linéaire et comporte des singularités. En premier lieu, nous prouvons l’existence de solutions faibles pour une grande classe de données, y compris pour des données mesures. Ensuite, nous montrons que lorsque les données sont régulières, les solutions le sont aussi. Enfin, nous montrons que, dans le cas de données de mesures, l’existence de solutions est fortement liée à la capacité fractionnaire associée aux espaces de Sobolev fractionnaires. Ce qui nous a permis d’obtenir la forme naturelle du « gradient fractionnaire » adéquat lorsque nous traitons l’équation fractionnaire de Hamilton–Jacobi avec un gradient non local dans le sens de décomposition de Boccardo–Gallouët–Orsina.
Accepted:
Published online:
Keywords: The variable-order fractional linear elliptic problems, singular nonlinearities, capacities, measure decomposition, Harnack inequality
Kheireddine Biroud 1; El-Haj Laamri 2
@article{AFST_2024_6_33_3_681_0, author = {Kheireddine Biroud and El-Haj Laamri}, title = {On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {681--738}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {3}, year = {2024}, doi = {10.5802/afst.1785}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1785/} }
TY - JOUR AU - Kheireddine Biroud AU - El-Haj Laamri TI - On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 681 EP - 738 VL - 33 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1785/ DO - 10.5802/afst.1785 LA - en ID - AFST_2024_6_33_3_681_0 ER -
%0 Journal Article %A Kheireddine Biroud %A El-Haj Laamri %T On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 681-738 %V 33 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1785/ %R 10.5802/afst.1785 %G en %F AFST_2024_6_33_3_681_0
Kheireddine Biroud; El-Haj Laamri. On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 681-738. doi : 10.5802/afst.1785. https://afst.centre-mersenne.org/articles/10.5802/afst.1785/
[1] Very large solutions for the fractional Laplacian: towards a fractional Keller-Osserman condition, Adv. Nonlinear Anal., Volume 6 (2017) no. 4, pp. 383-405 | DOI | Zbl
[2] On the nonlocal KPZ Equation with a fractional gradient: existence and regularity results (submitted)
[3] Quasilinear elliptic problem with Hardy potential and singular term, Commun. Pure Appl. Anal., Volume 12 (2013) no. 3, pp. 1363-1380 | DOI | Zbl
[4] On the fractional -lLplacian equations with weight and general datum, Adv. Nonlinear Anal., Volume 8 (2019) no. 1, pp. 144-174 | DOI | Zbl
[5] Multiplicity results for nonlocal critical problems involving Hardy potential in the whole space, Complex Var. Elliptic Equ., Volume 68 (2023) no. 3, pp. 461-497 | DOI | Zbl
[6] Fractional KPZ equations with fractional gradient term and Hardy potential, Math. Eng., Volume 5 (2023) no. 2, 42, 36 pages | Zbl
[7] Global fractional Calderón-Zygmund regularity (2021) (https://arxiv.org/abs/2107.06535)
[8] Deterministic KPZ-type equations with nonlocal gradient terms, Ann. Mat. Pura Appl., Volume 202 (2023) no. 3, pp. 1451-1468 | DOI | Zbl
[9] The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differ. Equations, Volume 260 (2016) no. 11, pp. 8160-8206 | DOI | Zbl
[10] Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, 314, Springer, 1996, viii+366 pages | DOI
[11] Renormalized solutions of the fractional Laplace equation, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 13-14, pp. 759-762 | DOI | Numdam | Zbl
[12] On some Nonlocal Elliptic Systems with Gradient Source Terms, Acta Appl. Math., Volume 181 (2022), 9, 35 pages | DOI | Zbl
[13] Elliptic problems involving the fractional Laplacian in , J. Differ. Equations, Volume 255 (2013) no. 8, pp. 2340-2362 | DOI | Zbl
[14] A Theory of Capacities in fractional Sobolev space with variable exponents (2019) (https://arxiv.org/abs/1904.08997)
[15] Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., Volume 13 (2015), pp. 390-407 | Zbl
[16] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996) no. 5, pp. 539-551 | DOI | Numdam | Zbl
[17] Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differ. Equ., Volume 37 (2010) no. 3-4, pp. 363-380 | DOI | Zbl
[18] Sublinear elliptic equations in , Manuscr. Math., Volume 74 (1992) no. 1, pp. 87-106 | DOI | Zbl
[19] Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, 2016 | DOI
[20] Interior regularity for fractional systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 1, pp. 165-180 | DOI | Zbl
[21] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations, Volume 32 (2007) no. 8, pp. 1245-1260 | DOI | Zbl
[22] Minimax methods for singular elliptic equations with an application to a jumping problem, J. Differ. Equations, Volume 221 (2006) no. 1, pp. 210-223 | DOI | Zbl
[23] Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities, J. Differ. Equations, Volume 255 (2013) no. 11, pp. 4437-4447 | DOI
[24] Regularity of radial extremal solutions for some nonlocal semilinear equations, Commun. Partial Differ. Equations, Volume 36 (2011) no. 7-9, pp. 1353-1384 | DOI | Zbl
[25] Theory of capacities, Ann. Inst. Fourier, Volume 5 (1954), pp. 131-295 | DOI | Numdam | Zbl
[26] On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equations, Volume 2 (1977), pp. 193-222 | DOI | Zbl
[27] On the integral representation of certain local functionals, Ric. Mat., Volume 22 (1983), pp. 85-113 | Zbl
[28] Renormalization solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 28 (1999) no. 4, pp. 741-808 | Zbl
[29] Fractional Laplacians: a short survey, Discrete Contin. Dyn. Syst., Ser. S, Volume 15 (2022) no. 1, pp. 95-116 | DOI | Zbl
[30] Sulla differentiabilitá e l’analicitá delle estrimali degli integrali multipli regolari, Mem. Accad. Sci. Torino, P. I., III. Ser., Volume 3 (1957), pp. 25-43 | Zbl
[31] Nonlocal Harnack inequalities, J. Funct. Anal., Volume 267 (2014) no. 6, pp. 1807-1836 | DOI | Zbl
[32] Local behavior of fractional -minimizers, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2015) no. 5, pp. 1279-1299 | DOI | Zbl
[33] Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | Zbl
[34] Classical Potential Theory and its Probabilistic Counterpart, Classics in Mathematics, Springer, 2001 (reprint of the 1984 edition) | DOI
[35] A fractional order Hardy inequality, Ill. J. Math., Volume 48 (2004) no. 2, pp. 575-588 | Zbl
[36] Local regularity for parabolic nonlocal operators, Commun. Partial Differ. Equations, Volume 38 (2013) no. 7-9, pp. 1539-1573 | DOI | Zbl
[37] Radial fractional Laplace operators and Hessian inequalities, J. Differ. Equations, Volume 253 (2012) no. 1, pp. 244-272 | DOI | Zbl
[38] Sharp Trace Hardy–Sobolev–Maz’ya Inequalities and the Fractional Laplacian, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 1, pp. 109-161 | DOI | Zbl
[39] Homogenization of a Dirichlet semilinear elliptic problem with a strong singularity at in a domain with many small holes, J. Funct. Anal., Volume 274 (2018) no. 6, pp. 1747-1789 | DOI | Zbl
[40] Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., Volume 6 (2017) no. 3, pp. 327-354 | DOI | Zbl
[41] On Markov process generated by pseudodifferential operator of variable order, Osaka J. Math., Volume 34 (1997) no. 2, pp. 319-335 | Zbl
[42] Regularity of quasi-minimizers on metric spaces, Manuscr. Math., Volume 105 (2001) no. 3, pp. 401-423 | DOI | Zbl
[43] The obstacle problem for nonlinear integro-differential operators, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 3, 63, 29 pages | Zbl
[44] On a singular nonlinear elliptic boundary-value problem, Proc. Am. Math. Soc., Volume 111 (1991) no. 3, pp. 721-730 | DOI | Zbl
[45] Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 6031-6068 | DOI | Zbl
[46] Embedding of function spaces of variable order of differentiation, Czech. Math. J., Volume 49 (1999) no. 3, pp. 633-644 | DOI | Zbl
[47] Fractional eigenvalues, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1-2, pp. 795-826 | DOI | Zbl
[48] Initialized fractional calculus, Int. J. Appl. Math., Volume 3 (2000) no. 3, pp. 249-265 | Zbl
[49] Variable order and distributed order fractional operators, Nonlinear Dyn., Volume 29 (2002) no. 1-4, pp. 57-98 | DOI | Zbl
[50] On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 1, pp. 125-210 | DOI | Zbl
[51] The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal., Volume 166 (2003) no. 4, pp. 287-301 | DOI | Zbl
[52] On an anisotropic problem with singular nonlinearity having variable exponent, Ric. Mat., Volume 66 (2017) no. 2, pp. 415-424 | DOI | Zbl
[53] Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and Its Applications, 162, Cambridge University Press, 2016 | DOI
[54] Morrey global bounds and quasilinear Riccati type equations below the natural exponent, J. Math. Pures Appl., Volume 102 (2014) no. 1, pp. 99-123 | DOI | Zbl
[55] Fractional generalized random fields of variable order, Stochastic Anal. Appl., Volume 22 (2004) no. 3, pp. 775-799 | DOI | Zbl
[56] Integro-differential harmonic maps into spheres, Commun. Partial Differ. Equations, Volume 40 (2015) no. 3, pp. 506-539 | DOI
[57] On a new class of fractional partial differential equations, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 321-336 | DOI | Zbl
[58] The characterization of functions arising as potentials, Bull. Am. Math. Soc., Volume 67 (1961), pp. 102-104 | DOI | Zbl
[59] The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., Volume 42 (2015) no. 2, pp. 499-547 | DOI | Zbl
[60] Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., Theory Methods Appl., Volume 178 (2019), pp. 190-211 | DOI | Zbl
[61] Entropy solutions for nonlinear elliptic equations with variable exponents, Electron. J. Differ. Equ., Volume 2014 (2014), 92, 14 pages | Zbl
Cited by Sources: