On some elliptic fractional s(·) problems with singular potential and general datum
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 681-738.

The purpose this work is to address the question of existence and regularity of solutions to a class of nonlocal elliptic problems with variable-order fractional Laplace operator and whose behaviors are complicated by the presence of singular nonlinearities. First, we prove the existence of weak solutions for a large class of data, including measures in some cases. We also obtain additional regularity properties under suitable extra assumptions. Second, we show that, in the case of measures datum, existence analysis is strongly related to the fractional capacity associated to the fractional Sobolev spaces. As a consequence, we get the natural form of the adequate “fractional gradient” when dealing with the Hamilton–Jacobi fractional equation with nonlocal gradient term in the sense of Boccardo–Gallouët–Orsina decomposition Problem.

Le but de ce travail est d’étudier la question de l’existence et la régularité des solutions d’une classe de problèmes elliptiques non locaux gouvernés par l’opérateur de Laplace fractionnaire d’ordre variable, et dont le second membre est non linéaire et comporte des singularités. En premier lieu, nous prouvons l’existence de solutions faibles pour une grande classe de données, y compris pour des données mesures. Ensuite, nous montrons que lorsque les données sont régulières, les solutions le sont aussi. Enfin, nous montrons que, dans le cas de données de mesures, l’existence de solutions est fortement liée à la capacité fractionnaire associée aux espaces de Sobolev fractionnaires. Ce qui nous a permis d’obtenir la forme naturelle du « gradient fractionnaire » adéquat lorsque nous traitons l’équation fractionnaire de Hamilton–Jacobi avec un gradient non local dans le sens de décomposition de Boccardo–Gallouët–Orsina.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1785
Classification: 35B05, 35K15, 35B40, 35K55, 35K65
Keywords: The variable-order fractional linear elliptic problems, singular nonlinearities, capacities, measure decomposition, Harnack inequality

Kheireddine Biroud 1; El-Haj Laamri 2

1 Laboratoire d’Analyse Non linéaire et Mathématiques Appliquées, École Supérieure de Management de Tlemcen, No. 01, Rue Barka Ahmed Bouhannak, Imama, Tlemcen 13000, Algeria
2 Institut Élie Cartan de Lorraine, Université de Lorraine, B.P: 239, 54506 Vandœuvre-Lés-Nancy Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_3_681_0,
     author = {Kheireddine Biroud and El-Haj Laamri},
     title = {On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {681--738},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {3},
     year = {2024},
     doi = {10.5802/afst.1785},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1785/}
}
TY  - JOUR
AU  - Kheireddine Biroud
AU  - El-Haj Laamri
TI  - On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 681
EP  - 738
VL  - 33
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1785/
DO  - 10.5802/afst.1785
LA  - en
ID  - AFST_2024_6_33_3_681_0
ER  - 
%0 Journal Article
%A Kheireddine Biroud
%A El-Haj Laamri
%T On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 681-738
%V 33
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1785/
%R 10.5802/afst.1785
%G en
%F AFST_2024_6_33_3_681_0
Kheireddine Biroud; El-Haj Laamri. On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 3, pp. 681-738. doi : 10.5802/afst.1785. https://afst.centre-mersenne.org/articles/10.5802/afst.1785/

[1] Nicola Abatangelo Very large solutions for the fractional Laplacian: towards a fractional Keller-Osserman condition, Adv. Nonlinear Anal., Volume 6 (2017) no. 4, pp. 383-405 | DOI | Zbl

[2] Boumediene Abdellaoui; Somia Atmani; Kheireddine Biroud; El-Haj Laamri On the nonlocal KPZ Equation with a fractional gradient: existence and regularity results (submitted)

[3] Boumediene Abdellaoui; Ahmed Attar Quasilinear elliptic problem with Hardy potential and singular term, Commun. Pure Appl. Anal., Volume 12 (2013) no. 3, pp. 1363-1380 | DOI | Zbl

[4] Boumediene Abdellaoui; Ahmed Attar; Rachid Bentifour On the fractional p-lLplacian equations with weight and general datum, Adv. Nonlinear Anal., Volume 8 (2019) no. 1, pp. 144-174 | DOI | Zbl

[5] Boumediene Abdellaoui; Ahmed Attar; Youssouf O. Boukarabila; El-Haj Laamri Multiplicity results for nonlocal critical problems involving Hardy potential in the whole space, Complex Var. Elliptic Equ., Volume 68 (2023) no. 3, pp. 461-497 | DOI | Zbl

[6] Boumediene Abdellaoui; Kheireddine Biroud; Ana Primo; Fernando Soria; Abdelbadie Younes Fractional KPZ equations with fractional gradient term and Hardy potential, Math. Eng., Volume 5 (2023) no. 2, 42, 36 pages | Zbl

[7] Boumediene Abdellaoui; Antonio J. Fernández; Tommaso Leonori; Abdelbadie Younes Global fractional Calderón-Zygmund regularity (2021) (https://arxiv.org/abs/2107.06535)

[8] Boumediene Abdellaoui; Antonio J. Fernández; Tommaso Leonori; Abdelbadie Younes Deterministic KPZ-type equations with nonlocal gradient terms, Ann. Mat. Pura Appl., Volume 202 (2023) no. 3, pp. 1451-1468 | DOI | Zbl

[9] Boumediene Abdellaoui; María Medina; Ireneo Peral; Ana Primo The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differ. Equations, Volume 260 (2016) no. 11, pp. 8160-8206 | DOI | Zbl

[10] David R. Adams; Lars I. Hedberg Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, 314, Springer, 1996, viii+366 pages | DOI

[11] Nathaël Alibaud; Boris Andreianov; Mostafa Bendahmane Renormalized solutions of the fractional Laplace equation, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 13-14, pp. 759-762 | DOI | Numdam | Zbl

[12] Somia Atmani; Kheireddine Biroud; Maha Daoud; El-Haj Laamri On some Nonlocal Elliptic Systems with Gradient Source Terms, Acta Appl. Math., Volume 181 (2022), 9, 35 pages | DOI | Zbl

[13] Giuseppina Autuori; Patrizia Pucci Elliptic problems involving the fractional Laplacian in N , J. Differ. Equations, Volume 255 (2013) no. 8, pp. 2340-2362 | DOI | Zbl

[14] Azeddine Baalal; Mohamed Berghout A Theory of Capacities in fractional Sobolev space with variable exponents (2019) (https://arxiv.org/abs/1904.08997)

[15] Begoña Barrios; Ida De Bonis; María Medina; Ireneo Peral Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., Volume 13 (2015), pp. 390-407 | Zbl

[16] Lucio Boccardo; Thierry Gallouët; Luigi Orsina Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996) no. 5, pp. 539-551 | DOI | Numdam | Zbl

[17] Lucio Boccardo; Luigi Orsina Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differ. Equ., Volume 37 (2010) no. 3-4, pp. 363-380 | DOI | Zbl

[18] Haïm Brézis; Shoshana Kamin Sublinear elliptic equations in n , Manuscr. Math., Volume 74 (1992) no. 1, pp. 87-106 | DOI | Zbl

[19] Claudia Bucur; Enrico Valdinoci Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, 2016 | DOI

[20] Luis Caffarelli; Gonzalo Dávila Interior regularity for fractional systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 1, pp. 165-180 | DOI | Zbl

[21] Luis Caffarelli; Luis Silvestre An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations, Volume 32 (2007) no. 8, pp. 1245-1260 | DOI | Zbl

[22] Annamaria Canino Minimax methods for singular elliptic equations with an application to a jumping problem, J. Differ. Equations, Volume 221 (2006) no. 1, pp. 210-223 | DOI | Zbl

[23] Annamaria Canino; Mascia Grandinetti; Berardino Sciunzi Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities, J. Differ. Equations, Volume 255 (2013) no. 11, pp. 4437-4447 | DOI

[24] Antonio Capella; Juan Dávila; Louis Dupaigne; Yannick Sire Regularity of radial extremal solutions for some nonlocal semilinear equations, Commun. Partial Differ. Equations, Volume 36 (2011) no. 7-9, pp. 1353-1384 | DOI | Zbl

[25] Gustave Choquet Theory of capacities, Ann. Inst. Fourier, Volume 5 (1954), pp. 131-295 | DOI | Numdam | Zbl

[26] Michael G. Crandall; Paul H. Rabinowitz; Luc Tartar On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equations, Volume 2 (1977), pp. 193-222 | DOI | Zbl

[27] Gianni Dal Maso On the integral representation of certain local functionals, Ric. Mat., Volume 22 (1983), pp. 85-113 | Zbl

[28] Gianni Dal Maso; François Murat; Luigi Orsina; Alain Prignet Renormalization solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 28 (1999) no. 4, pp. 741-808 | Zbl

[29] Maha Daoud; El-Haj Laamri Fractional Laplacians: a short survey, Discrete Contin. Dyn. Syst., Ser. S, Volume 15 (2022) no. 1, pp. 95-116 | DOI | Zbl

[30] Ennio De Giorgi Sulla differentiabilitá e l’analicitá delle estrimali degli integrali multipli regolari, Mem. Accad. Sci. Torino, P. I., III. Ser., Volume 3 (1957), pp. 25-43 | Zbl

[31] Agnese Di Castro; Tuomo Kuusi; Giampiero Palatucci Nonlocal Harnack inequalities, J. Funct. Anal., Volume 267 (2014) no. 6, pp. 1807-1836 | DOI | Zbl

[32] Agnese Di Castro; Tuomo Kuusi; Giampiero Palatucci Local behavior of fractional p-minimizers, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2015) no. 5, pp. 1279-1299 | DOI | Zbl

[33] Eleonora Di Nezza; Giampiero Palatucci; Enrico Valdinoci Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | Zbl

[34] Joseph L. Doob Classical Potential Theory and its Probabilistic Counterpart, Classics in Mathematics, Springer, 2001 (reprint of the 1984 edition) | DOI

[35] Bartłomiej Dyda A fractional order Hardy inequality, Ill. J. Math., Volume 48 (2004) no. 2, pp. 575-588 | Zbl

[36] Matthieu Felsinger; Moritz Kassmann Local regularity for parabolic nonlocal operators, Commun. Partial Differ. Equations, Volume 38 (2013) no. 7-9, pp. 1539-1573 | DOI | Zbl

[37] Fausto Ferrari; Igor E. Verbitsky Radial fractional Laplace operators and Hessian inequalities, J. Differ. Equations, Volume 253 (2012) no. 1, pp. 244-272 | DOI | Zbl

[38] Stathis Filippas; Luisa Moschini; Achilles Tertikas Sharp Trace Hardy–Sobolev–Maz’ya Inequalities and the Fractional Laplacian, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 1, pp. 109-161 | DOI | Zbl

[39] Daniela Giachetti; Pedro J. Martínez-Aparicio; François Murat Homogenization of a Dirichlet semilinear elliptic problem with a strong singularity at u=0 in a domain with many small holes, J. Funct. Anal., Volume 274 (2018) no. 6, pp. 1747-1789 | DOI | Zbl

[40] Jacques Giacomoni; Tuhina Mukherjee; Konijeti Sreenadh Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., Volume 6 (2017) no. 3, pp. 327-354 | DOI | Zbl

[41] Koji Kikuchi; Akira Negoro On Markov process generated by pseudodifferential operator of variable order, Osaka J. Math., Volume 34 (1997) no. 2, pp. 319-335 | Zbl

[42] Juha Kinnunen; Nageswari Shanmugalingam Regularity of quasi-minimizers on metric spaces, Manuscr. Math., Volume 105 (2001) no. 3, pp. 401-423 | DOI | Zbl

[43] Janne Korvenpää; Tuomo Kuusi; Giampiero Palatucci The obstacle problem for nonlinear integro-differential operators, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 3, 63, 29 pages | Zbl

[44] Alan C. Lazer; Patrick J. McKenna On a singular nonlinear elliptic boundary-value problem, Proc. Am. Math. Soc., Volume 111 (1991) no. 3, pp. 721-730 | DOI | Zbl

[45] Tommaso Leonori; Ireneo Peral; Ana Primo; Fernando Soria Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 6031-6068 | DOI | Zbl

[46] Hans-Gerd Leopold Embedding of function spaces of variable order of differentiation, Czech. Math. J., Volume 49 (1999) no. 3, pp. 633-644 | DOI | Zbl

[47] Erik Lindgren; Peter Lindqvist Fractional eigenvalues, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1-2, pp. 795-826 | DOI | Zbl

[48] Carl F. Lorenzo; Tom T. Hartley Initialized fractional calculus, Int. J. Appl. Math., Volume 3 (2000) no. 3, pp. 249-265 | Zbl

[49] Carl F. Lorenzo; Tom T. Hartley Variable order and distributed order fractional operators, Nonlinear Dyn., Volume 29 (2002) no. 1-4, pp. 57-98 | DOI | Zbl

[50] Vincent Millot; Yannick Sire On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 1, pp. 125-210 | DOI | Zbl

[51] Giuseppe Mingione The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal., Volume 166 (2003) no. 4, pp. 287-301 | DOI | Zbl

[52] Sofiane El-Hadi Miri On an anisotropic problem with singular nonlinearity having variable exponent, Ric. Mat., Volume 66 (2017) no. 2, pp. 415-424 | DOI | Zbl

[53] Giovanni Molica Bisci; Vicentiu D. Radulescu; Raffaella Servadei Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and Its Applications, 162, Cambridge University Press, 2016 | DOI

[54] Nguyen Cong Phuc Morrey global bounds and quasilinear Riccati type equations below the natural exponent, J. Math. Pures Appl., Volume 102 (2014) no. 1, pp. 99-123 | DOI | Zbl

[55] María D. Ruiz-Medina; Vo V. Anh; José M. Angulo Fractional generalized random fields of variable order, Stochastic Anal. Appl., Volume 22 (2004) no. 3, pp. 775-799 | DOI | Zbl

[56] Armin Schikorra Integro-differential harmonic maps into spheres, Commun. Partial Differ. Equations, Volume 40 (2015) no. 3, pp. 506-539 | DOI

[57] Tien-Tsan Shieh; Daniel E. Spector On a new class of fractional partial differential equations, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 321-336 | DOI | Zbl

[58] Elias M. Stein The characterization of functions arising as potentials, Bull. Am. Math. Soc., Volume 67 (1961), pp. 102-104 | DOI | Zbl

[59] Mahamadi Warma The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., Volume 42 (2015) no. 2, pp. 499-547 | DOI | Zbl

[60] Mingqi Xiang; Binlin Zhang; Di Yang Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., Theory Methods Appl., Volume 178 (2019), pp. 190-211 | DOI | Zbl

[61] Chao Zhang Entropy solutions for nonlinear elliptic equations with variable exponents, Electron. J. Differ. Equ., Volume 2014 (2014), 92, 14 pages | Zbl

Cited by Sources: