Nous donnons un exemple d’extension d’anneaux locaux réguliers à deux dimensions dans une tour de deux extensions d’Artin–Schreier de défauts indépendants pour lesquelles la monomialisation locale forte ne tient pas.
We give an example of an extension of two dimensional regular local rings in a tower of two independent defect Artin–Schreier extensions for which strong local monomialization does not hold.
Accepté le :
Publié le :
Mots-clés : valuation, positive characteristic, defect, strong monomialization
Steven Dale Cutkosky 1

@article{AFST_2024_6_33_4_915_0, author = {Steven Dale Cutkosky}, title = {A counterexample to strong local monomialization in a tower of two independent defect {Artin{\textendash}Schreier} extensions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {915--935}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {4}, year = {2024}, doi = {10.5802/afst.1790}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1790/} }
TY - JOUR AU - Steven Dale Cutkosky TI - A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 915 EP - 935 VL - 33 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1790/ DO - 10.5802/afst.1790 LA - en ID - AFST_2024_6_33_4_915_0 ER -
%0 Journal Article %A Steven Dale Cutkosky %T A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 915-935 %V 33 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1790/ %R 10.5802/afst.1790 %G en %F AFST_2024_6_33_4_915_0
Steven Dale Cutkosky. A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 915-935. doi : 10.5802/afst.1790. https://afst.centre-mersenne.org/articles/10.5802/afst.1790/
[1] On the valuations centered in a local domain, Am. J. Math., Volume 78 (1956), pp. 321-348 | DOI | MR | Zbl
[2] Local factorization and monomialization of morphisms, Astérisque, 260, Société Mathématique de France, 1999, 149 pages | Numdam | Zbl
[3] Monomialization of Morphisms from 3 Folds to Surfaces, Lecture Notes in Mathematics, 1786, Springer, 2002, v+235 pages | DOI | MR
[4] Counterexamples to local monomialization in positive characteristic, Math. Ann., Volume 362 (2015) no. 1-2, pp. 321-334 | DOI | MR | Zbl
[5] The role of defect and splitting in finite generation of extensions of associated graded rings along a valuation, Algebra Number Theory, Volume 11 (2017) no. 6, pp. 1461-1488 | DOI | MR | Zbl
[6] Erratic birational behavior of mappings in positive characteristic, Math. Nachr., Volume 296 (2023) no. 11, pp. 5123-5156 | DOI | MR | Zbl
[7] On the construction of valuations and generating sequences, Algebr. Geom., Volume 8 (2021) no. 6, pp. 705-748 | DOI | MR | Zbl
[8] Ramification of Valuations, Adv. Math., Volume 183 (2004) no. 1, pp. 1-79 | DOI | MR | Zbl
[9] Valuation semigroups of two dimensional local rings, Proc. Lond. Math. Soc., Volume 108 (2014) no. 2, pp. 350-384 | DOI | MR | Zbl
[10] Dependent Artin-Schreier defect extensions and strong monomialization, J. Pure Appl. Algebra, Volume 220 (2016) no. 4, pp. 1331-1342 | DOI | MR | Zbl
[11] Valuation Theory, Universitext, Springer, 1972, xii+243 pages | DOI | MR | Zbl
[12] Valuation theoretic and model theoretic aspects of local uniformization, Resolution of singularities. A research textbook in tribute to Oscar Zariski (Progress in Mathematics), Volume 181, Birkhäuser, 2000, pp. 381-456 | Zbl
[13] A classification of Artin Schreier defect extensions and characterizations of defectless fields, Ill. J. Math., Volume 54 (2010) no. 2, pp. 397-448 | MR | Zbl
[14] Higher ramification groups for Artin-Schreier defect extensions, 2012 (manuscript)
[15] The valuation theory of deeply ramified fields and its connection with defect extensions, Trans. Am. Math. Soc., Volume 376 (2023) no. 4, pp. 2693-2738 | MR | Zbl
[16] Key polynomials and pseudo convergent sequences, J. Algebra, Volume 495 (2018), pp. 199-219 | DOI | MR | Zbl
[17] On the Jung method in positive characteristic, Ann. Inst. Fourier, Volume 53 (2003) no. 4, pp. 1237-1258 (Proceedings of the International Conference in Honor of Frédéric Pham) | DOI | Numdam | MR | Zbl
[18] Valuations in function fields of surfaces, Am. J. Math., Volume 112 (1990) no. 1, pp. 107-156 | DOI | MR | Zbl
[19] Famille admissible de valuations et défaut d’une extension, J. Algebra, Volume 311 (2007) no. 2, pp. 859-876 | DOI | MR | Zbl
[20] Commutative algebra. Vol. I, The University Series in Higher Mathematics, D. van Nostrand Company, 1958, xi+329 pages | Zbl
[21] Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. van Nostrand Company, 1960, x+414 pages | DOI | MR | Zbl
Cité par Sources :