Dans cet article, nous définissons formellement des structures contacts -décalées sur des champs (d’Artin) dérivés et étudions leurs propriétés locales dans le contexte de la géométrie algébrique dérivée. À cet égard, pour les -schémas dérivés contacts -décalés, nous développons un théorème de type Darboux et formulons la notion de symplectification.
In this paper, we formally define -shifted contact structures on derived (Artin) stacks and study their local properties in the context of derived algebraic geometry. In this regard, for -shifted contact derived -schemes, we develop a Darboux-like theorem and formulate the notion of symplectification.
Accepté le :
Publié le :
Keywords: derived algebraic geometry, shifted symplectic structures, contact geometry
Mots-clés : la géométrie algébrique dérivée, structures symplectiques décalées, géométrie contact
Kadri İlker Berktav 1

@article{AFST_2024_6_33_4_1019_0, author = {Kadri \.Ilker Berktav}, title = {Shifted {Contact} {Structures} and {Their} {Local} {Theory}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1019--1057}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {4}, year = {2024}, doi = {10.5802/afst.1795}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1795/} }
TY - JOUR AU - Kadri İlker Berktav TI - Shifted Contact Structures and Their Local Theory JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 1019 EP - 1057 VL - 33 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1795/ DO - 10.5802/afst.1795 LA - en ID - AFST_2024_6_33_4_1019_0 ER -
%0 Journal Article %A Kadri İlker Berktav %T Shifted Contact Structures and Their Local Theory %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 1019-1057 %V 33 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1795/ %R 10.5802/afst.1795 %G en %F AFST_2024_6_33_4_1019_0
Kadri İlker Berktav. Shifted Contact Structures and Their Local Theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 1019-1057. doi : 10.5802/afst.1795. https://afst.centre-mersenne.org/articles/10.5802/afst.1795/
[1] The geometry of ambiguity: an introduction to the ideas of derived geometry, New spaces in mathematics—formal and conceptual reflections, Cambridge University Press, 2021, pp. 505-553 | DOI | MR | Zbl
[2] Mathematical Methods of Classical Mechanics, Nauka, 1989 | DOI
[3] A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol., Volume 19 (2015) no. 3, pp. 1287-1359 | DOI | MR | Zbl
[4] A Darboux theorem for derived schemes with shifted symplectic structure, J. Am. Math. Soc., Volume 32 (2019) no. 2, pp. 399-443 | DOI | MR | Zbl
[5] Shifted cotangent stacks are shifted symplectic, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019) no. 1, pp. 67-90 | DOI | Numdam | MR | Zbl
[6] Shifted Poisson structures and deformation quantization, J. Topol., Volume 10 (2017) no. 2, pp. 483-584 | DOI | MR | Zbl
[7] An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, 2008 | DOI | MR
[8] Derived Symplectic Reduction and L-Equivariant Geometry (2023) | arXiv | DOI
[9] A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019), pp. 831-908 | DOI | Numdam | MR | Zbl
[10] Derived algebraic geometry, Ph. D. Thesis, Massachusetts Institute of Technology (2004)
[11] Higher algebra, 2017
[12] Shifted symplectic structures, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 271-328 | DOI | Numdam | MR | Zbl
[13] Shifted Poisson structures in representation theory (2019) (lecture notes)
[14] Lectures on Symplectic Geometry, Lecture Notes in Mathematics, 1764, Springer, 2008 | DOI | MR
[15] Derived algebraic geometry, EMS Surv. Math. Sci., Volume 1 (2014) no. 2, pp. 153-240 | DOI | MR | Zbl
[16] Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Am. Math. Soc., Volume 193 (2008) no. 902, p. x+224 | DOI | MR | Zbl
[17] What is... a Derived Stack?, Notices Am. Math. Soc., Volume 58 (2011) no. 7, pp. 955-958 | MR | Zbl
Cité par Sources :