The landscape function on $\mathbb{R}^d$
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 315-337.

Consider the Schrödinger operator $-\triangle +\lambda V$ with non-negative iid random potential $V$ of strength $\lambda >0$. We prove existence and uniqueness of the associated landscape function on the whole space, and show that its correlations decay exponentially. As a main ingredient we establish the (annealed and quenched) exponential decay of the Green function of $-\triangle +\lambda V$ using Agmon’s positivity method, rank-one perturbation in dimensions $d\ge 3$, and first-passage percolation in dimensions $d=1,2$.

Soit $-\triangle +\lambda V$ l’opérateur de Schrödinger avec un potentiel aléatoire $V$ positif (à valeurs indépendantes et identiquement distribuées) d’intensité $\lambda >0$. Nous démontrons l’existence et l’unicité de la fonction de paysage associée sur tout l’espace et établissons la décroissance exponentielle de ses corrélations. L’ingrédient principal est la décroissance exponentielle (trajectorielle et en moyenne) de la fonction de Green de $-\triangle +\lambda V$ que nous montrons en combinant la méthode de positivité d’Agmon avec un argument de perturbation de rang un en dimensions $d\ge 3$ et des résultats de percolation de premier passage en dimensions $d=1,2$.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1814

Guy David 1 ; Antoine Gloria 2 ; Svitlana Mayboroda 3

1 Université Paris-Saclay, Laboratoire de Mathématiques d’Orsay, 91405, France
2 LJLL, Sorbonne Université, 4 place Jussieu, 75005 Paris France, Institut Universitaire de France (IUF), and Département de Mathématique, ULB, Bruxelles, Belgium
3 Department of Mathematics ETH Zurich, Zentrum campus, Ramistrasse 101, 8092 Zurich, Switzerland, and School of Mathematics, University of Minnesota, 206 Church St SE, Minneapolis, MN 55455 USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_2_315_0,
     author = {Guy David and Antoine Gloria and Svitlana Mayboroda},
     title = {The landscape function on $\mathbb{R}^d$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {315--337},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {2},
     year = {2025},
     doi = {10.5802/afst.1814},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1814/}
}
TY  - JOUR
AU  - Guy David
AU  - Antoine Gloria
AU  - Svitlana Mayboroda
TI  - The landscape function on $\mathbb{R}^d$
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 315
EP  - 337
VL  - 34
IS  - 2
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1814/
DO  - 10.5802/afst.1814
LA  - en
ID  - AFST_2025_6_34_2_315_0
ER  - 
%0 Journal Article
%A Guy David
%A Antoine Gloria
%A Svitlana Mayboroda
%T The landscape function on $\mathbb{R}^d$
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 315-337
%V 34
%N 2
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1814/
%R 10.5802/afst.1814
%G en
%F AFST_2025_6_34_2_315_0
Guy David; Antoine Gloria; Svitlana Mayboroda. The landscape function on $\mathbb{R}^d$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 315-337. doi : 10.5802/afst.1814. https://afst.centre-mersenne.org/articles/10.5802/afst.1814/

[1] Shmuel Agmon Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes, 29, Princeton University Press; University of Tokyo Press, 1982 | MR | Zbl

[2] Michael Aizenman; David J. Barsky Sharpness of the phase transition in percolation models, Commun. Math. Phys., Volume 108 (1987) no. 3, pp. 489-526 | DOI | MR | Zbl

[3] Michael Aizenman; Alexander Elgart; Serguei Naboko; Jeffrey H. Schenker; Gunter Stolz Moment analysis for localization in random Schrödinger operators, Invent. Math., Volume 163 (2006) no. 2, pp. 343-413 | DOI | MR | Zbl

[4] Douglas N. Arnold; Guy David; Marcel Filoche; David Jerison; Svitlana Mayboroda Localization of eigenfunctions via an effective potential, Commun. Partial Differ. Equations, Volume 44 (2019) no. 11, pp. 1186-1216 | DOI | MR | Zbl

[5] Erwin Bolthausen; David Brydges Localization and decay of correlations for a pinned lattice free field in dimension two, State of the art in probability and statistics (Leiden, 1999) (Mathisca de Gunst et al., eds.) (IMS Lecture Notes – Monograph Series), Volume 36, Institute of Mathematical Statistics, 2001, pp. 134-149 | DOI | MR | Zbl

[6] David Brydges; Paul Federbush A lower bound for the mass of a random Gaussian lattice, Commun. Math. Phys., Volume 62 (1978) no. 1, pp. 79-82 | DOI | MR | Zbl

[7] Blair Davey; Jonathan Hill; Svitlana Mayboroda Fundamental matrices and Green matrices for non-homogeneous elliptic systems, Publ. Mat., Barc., Volume 62 (2018) no. 2, pp. 537-614 | DOI | MR | Zbl

[8] Guy David; Marcel Filoche; Svitlana Mayboroda The landscape law for the integrated density of states, Adv. Math., Volume 390 (2021), 107946, 34 pages | DOI | MR | Zbl

[9] Marcel Filoche; Svitlana Mayboroda Universal mechanism for Anderson and weak localization, Proc. Natl. Acad. Sci. USA, Volume 109 (2012) no. 37, pp. 14761-14766 | DOI | MR

[10] François Germinet; Abel Klein A comprehensive proof of localization for continuous Anderson models with singular random potentials, J. Eur. Math. Soc., Volume 15 (2013) no. 1, pp. 53-143 | DOI | MR | Zbl

[11] David Gilbarg; Neil S. Trudinger Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 | DOI | MR | Zbl

[12] Antoine Gloria Reduction of the resonance error. I: Approximation of homogenized coefficients, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 8, pp. 1601-1630 | DOI | MR | Zbl

[13] Antoine Gloria; Felix Otto An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab., Volume 22 (2012) no. 1, pp. 1-28 | DOI | MR | Zbl

[14] Harry Kesten Aspects of first passage percolation, École d’été de probabilités de Saint-Flour, XIV – 1984 (Lecture Notes in Mathematics), Volume 1180, Springer, 1986, pp. 125-264 | DOI | MR | Zbl

[15] Elena Kosygina; Thomas S. Mountford; Martin P. W. Zerner Lyapunov exponents of Green’s functions for random potentials tending to zero, Probab. Theory Relat. Fields, Volume 150 (2011) no. 1-2, pp. 43-59 | DOI | MR | Zbl

[16] Alain-Sol Sznitman Brownian motion, obstacles and random media, Springer Monographs in Mathematics, Springer, 1998 | DOI | MR | Zbl

[17] Martin P. W. Zerner Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment, Ann. Probab., Volume 26 (1998) no. 4, pp. 1446-1476 | DOI | MR | Zbl

Cité par Sources :