Consider the Schrödinger operator $-\triangle +\lambda V$ with non-negative iid random potential $V$ of strength $\lambda >0$. We prove existence and uniqueness of the associated landscape function on the whole space, and show that its correlations decay exponentially. As a main ingredient we establish the (annealed and quenched) exponential decay of the Green function of $-\triangle +\lambda V$ using Agmon’s positivity method, rank-one perturbation in dimensions $d\ge 3$, and first-passage percolation in dimensions $d=1,2$.
Soit $-\triangle +\lambda V$ l’opérateur de Schrödinger avec un potentiel aléatoire $V$ positif (à valeurs indépendantes et identiquement distribuées) d’intensité $\lambda >0$. Nous démontrons l’existence et l’unicité de la fonction de paysage associée sur tout l’espace et établissons la décroissance exponentielle de ses corrélations. L’ingrédient principal est la décroissance exponentielle (trajectorielle et en moyenne) de la fonction de Green de $-\triangle +\lambda V$ que nous montrons en combinant la méthode de positivité d’Agmon avec un argument de perturbation de rang un en dimensions $d\ge 3$ et des résultats de percolation de premier passage en dimensions $d=1,2$.
Accepté le :
Publié le :
Guy David 1 ; Antoine Gloria 2 ; Svitlana Mayboroda 3

@article{AFST_2025_6_34_2_315_0, author = {Guy David and Antoine Gloria and Svitlana Mayboroda}, title = {The landscape function on $\mathbb{R}^d$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {315--337}, publisher = {Universit\'e de Toulouse, Toulouse}, volume = {Ser. 6, 34}, number = {2}, year = {2025}, doi = {10.5802/afst.1814}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1814/} }
TY - JOUR AU - Guy David AU - Antoine Gloria AU - Svitlana Mayboroda TI - The landscape function on $\mathbb{R}^d$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 315 EP - 337 VL - 34 IS - 2 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1814/ DO - 10.5802/afst.1814 LA - en ID - AFST_2025_6_34_2_315_0 ER -
%0 Journal Article %A Guy David %A Antoine Gloria %A Svitlana Mayboroda %T The landscape function on $\mathbb{R}^d$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 315-337 %V 34 %N 2 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1814/ %R 10.5802/afst.1814 %G en %F AFST_2025_6_34_2_315_0
Guy David; Antoine Gloria; Svitlana Mayboroda. The landscape function on $\mathbb{R}^d$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 2, pp. 315-337. doi : 10.5802/afst.1814. https://afst.centre-mersenne.org/articles/10.5802/afst.1814/
[1] Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of -body Schrödinger operators, Mathematical Notes, 29, Princeton University Press; University of Tokyo Press, 1982 | MR | Zbl
[2] Sharpness of the phase transition in percolation models, Commun. Math. Phys., Volume 108 (1987) no. 3, pp. 489-526 | DOI | MR | Zbl
[3] Moment analysis for localization in random Schrödinger operators, Invent. Math., Volume 163 (2006) no. 2, pp. 343-413 | DOI | MR | Zbl
[4] Localization of eigenfunctions via an effective potential, Commun. Partial Differ. Equations, Volume 44 (2019) no. 11, pp. 1186-1216 | DOI | MR | Zbl
[5] Localization and decay of correlations for a pinned lattice free field in dimension two, State of the art in probability and statistics (Leiden, 1999) (Mathisca de Gunst et al., eds.) (IMS Lecture Notes – Monograph Series), Volume 36, Institute of Mathematical Statistics, 2001, pp. 134-149 | DOI | MR | Zbl
[6] A lower bound for the mass of a random Gaussian lattice, Commun. Math. Phys., Volume 62 (1978) no. 1, pp. 79-82 | DOI | MR | Zbl
[7] Fundamental matrices and Green matrices for non-homogeneous elliptic systems, Publ. Mat., Barc., Volume 62 (2018) no. 2, pp. 537-614 | DOI | MR | Zbl
[8] The landscape law for the integrated density of states, Adv. Math., Volume 390 (2021), 107946, 34 pages | DOI | MR | Zbl
[9] Universal mechanism for Anderson and weak localization, Proc. Natl. Acad. Sci. USA, Volume 109 (2012) no. 37, pp. 14761-14766 | DOI | MR
[10] A comprehensive proof of localization for continuous Anderson models with singular random potentials, J. Eur. Math. Soc., Volume 15 (2013) no. 1, pp. 53-143 | DOI | MR | Zbl
[11] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 | DOI | MR | Zbl
[12] Reduction of the resonance error. I: Approximation of homogenized coefficients, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 8, pp. 1601-1630 | DOI | MR | Zbl
[13] An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab., Volume 22 (2012) no. 1, pp. 1-28 | DOI | MR | Zbl
[14] Aspects of first passage percolation, École d’été de probabilités de Saint-Flour, XIV – 1984 (Lecture Notes in Mathematics), Volume 1180, Springer, 1986, pp. 125-264 | DOI | MR | Zbl
[15] Lyapunov exponents of Green’s functions for random potentials tending to zero, Probab. Theory Relat. Fields, Volume 150 (2011) no. 1-2, pp. 43-59 | DOI | MR | Zbl
[16] Brownian motion, obstacles and random media, Springer Monographs in Mathematics, Springer, 1998 | DOI | MR | Zbl
[17] Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment, Ann. Probab., Volume 26 (1998) no. 4, pp. 1446-1476 | DOI | MR | Zbl
Cité par Sources :