Good height functions on quasi-projective varieties: equidistribution and applications in dynamics
[Bonnes fonctions hauteurs sur des variétés quasi-projectives : équidistribution et applications en dynamique]
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 57-94

In the present article, we define a notion of good height functions on quasi-projective varieties $V$ defined over number fields and prove an equidistribution theorem of small points for such height functions. Those good height functions are defined as limits of height functions associated with semi-positive adelic metrization on big and nef $\mathbb{Q}$-line bundles on projective models of $V$ satisfying mild assumptions.

Building on a recent work of the author and Vigny as well as on a classical estimate of Call and Silverman, and inspiring from recent works of Kühne and Yuan and Zhang, we deduce the equidistribution of generic sequence of preperiodic parameters for families of polarized endomorphisms with marked points.

Dans cet article, nous définissons une notion de bonne fonction hauteur sur une variété quasi-projective $V$ définie sur un corps de nombres et nous prouvons un théorème d’équidistribution des petits points pour de telles fonctions hauteurs. Ces bonnes fonctions hauteurs sont définies comme des limites de fonctions hauteurs associées à des suites de $\mathbb{Q}$-fibrés en droites munis de métrisations adéliques semi-positives sur des modèles projectifs de $V$ satisfaisant des hypothèses assez générales.

En nous appuyant sur un récent travail de l’auteur et Vigny, ainsi que sur des estimées classiques de Call et Silverman, et en nous inspirant de travaux récents de Kühne et de Yuan et Zhang, nous en déduisons un résultat d’équidistribution pour les suites génériques de paramètres prépériodiques pour des familles d’endomorphismes polarisés munis de points marqués.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1841

Thomas Gauthier  1

1 Laboratoire de Mathématiques d’Orsay, Bâtiment 307, rue Michel Magat, Faculté des Sciences d’Orsay, Université Paris-Saclay F-91405 Orsay Cedex France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2026_6_35_1_57_0,
     author = {Thomas Gauthier},
     title = {Good height functions on quasi-projective varieties: equidistribution and applications in dynamics},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {57--94},
     year = {2026},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 35},
     number = {1},
     doi = {10.5802/afst.1841},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1841/}
}
TY  - JOUR
AU  - Thomas Gauthier
TI  - Good height functions on quasi-projective varieties: equidistribution and applications in dynamics
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2026
SP  - 57
EP  - 94
VL  - 35
IS  - 1
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1841/
DO  - 10.5802/afst.1841
LA  - en
ID  - AFST_2026_6_35_1_57_0
ER  - 
%0 Journal Article
%A Thomas Gauthier
%T Good height functions on quasi-projective varieties: equidistribution and applications in dynamics
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2026
%P 57-94
%V 35
%N 1
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1841/
%R 10.5802/afst.1841
%G en
%F AFST_2026_6_35_1_57_0
Thomas Gauthier. Good height functions on quasi-projective varieties: equidistribution and applications in dynamics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 57-94. doi: 10.5802/afst.1841

[1] Matthew Baker; Laura DeMarco Preperiodic points and unlikely intersections, Duke Math. J., Volume 159 (2011) no. 1, pp. 1-29 | Zbl | MR

[2] Matthew Baker; Laura DeMarco Special curves and postcritically finite polynomials, Forum Math. Pi, Volume 1 (2013), e3, 35 pages | Zbl | MR

[3] Matthew Baker; Robert Rumely Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier, Volume 56 (2006) no. 3, pp. 625-688 | Zbl | Numdam | DOI | MR

[4] Matthew Baker; Robert Rumely Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010, xxxiv+428 pages | DOI | Zbl | MR

[5] Giovanni Bassanelli; François Berteloot Bifurcation currents in holomorphic dynamics on k , J. Reine Angew. Math., Volume 608 (2007), pp. 201-235 | Zbl | MR

[6] Giovanni Bassanelli; François Berteloot Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J., Volume 201 (2011), pp. 23-43 | DOI | Zbl | MR

[7] Robert Berman; Sébastien Boucksom Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010) no. 2, pp. 337-394 | Zbl | DOI | MR

[8] Yuri Bilu Limit distribution of small points on algebraic tori, Duke Math. J., Volume 89 (1997) no. 3, pp. 465-476 | Zbl | MR

[9] Enrico Bombieri; Walter Gubler Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | Zbl | MR

[10] Sébastien Boucksom; Dennis Eriksson Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 124 pages | Zbl | MR

[11] Xavier Buff On postcritically finite unicritical polynomials, New York J. Math., Volume 24 (2018), pp. 1111-1122 | Zbl | MR

[12] Xavier Buff; Adam Epstein Bifurcation Measure and Postcritically Finite Rational Maps, Complex dynamics. Families and friends (Dierk Schleicher, ed.), A K Peters, 2009, pp. 491-512 | Zbl | DOI

[13] José Ignacio Burgos Gil; Patrice Philippon; Juan Rivera-Letelier; Martín Sombra The distribution of Galois orbits of points of small height in toric varieties, Am. J. Math., Volume 141 (2019) no. 2, pp. 309-381 | Zbl | MR

[14] Gregory S. Call; Joseph H. Silverman Canonical heights on varieties with morphisms, Compos. Math., Volume 89 (1993) no. 2, pp. 163-205 | Zbl | Numdam | MR

[15] Antoine Chambert-Loir Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl | MR

[16] Antoine Chambert-Loir Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II (London Mathematical Society Lecture Note Series), Volume 384, Cambridge University Press, 2011, pp. 1-50 | Zbl

[17] Antoine Chambert-Loir; Antoine Ducros Formes différentielles réelles et courants sur les espaces de Berkovich (2012) | arXiv

[18] Antoine Chambert-Loir; Amaury Thuillier Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 977-1014 | Zbl | Numdam | DOI | MR

[19] Laura DeMarco Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | Zbl | DOI | MR

[20] Laura DeMarco; Yûsuke Okuyama Discontinuity of a degenerating escape rate, Conform. Geom. Dyn., Volume 22 (2018), pp. 33-44 | Zbl | DOI | MR

[21] Laura DeMarco; Xiaoguang Wang; Hexi Ye Bifurcation measures and quadratic rational maps, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 1, pp. 149-180 | Zbl | DOI | MR

[22] Romain Dujardin The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse, Math. (6), Volume 22 (2013) no. 3, pp. 445-464 | Zbl | Numdam | DOI | MR

[23] Romain Dujardin; Charles Favre Distribution of rational maps with a preperiodic critical point, Am. J. Math., Volume 130 (2008) no. 4, pp. 979-1032 | Zbl | DOI | MR

[24] Charles Favre; Thomas Gauthier Distribution of postcritically finite polynomials, Isr. J. Math., Volume 209 (2015) no. 1, pp. 235-292 | DOI | Zbl | MR

[25] Charles Favre; Thomas Gauthier The arithmetic of polynomial dynamical pairs, Annals of Mathematics Studies, 214, Princeton University Press, 2022, xvii+232 pages | Zbl | MR

[26] Charles Favre; Juan Rivera-Letelier Equidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., Volume 335 (2006) no. 2, pp. 311-361 corrigendum in ibid. 339 (2007), no. 4, p. 799-801 | Zbl | DOI | MR

[27] Ziyang Gao; Philipp Habegger Heights in families of abelian varieties and the geometric Bogomolov conjecture, Ann. Math., Volume 189 (2019) no. 2, pp. 527-604 | Zbl

[28] Thomas Gauthier Dynamical pairs with an absolutely continuous bifurcation measure, Ann. Fac. Sci. Toulouse, Math. (6), Volume 32 (2023) no. 2, pp. 203-230 | Zbl | Numdam | DOI | MR

[29] Thomas Gauthier; Yûsuke Okuyama; Gabriel Vigny Approximation of non-archimedean Lyapunov exponents and applications over global fields, Trans. Am. Math. Soc., Volume 373 (2020) no. 12, pp. 8963-9011 | Zbl | DOI | MR

[30] Thomas Gauthier; Gabriel Vigny Complex Dynamics of birational maps of k defined over a number field, J. Anal. Math., Volume 127 (2025) no. 2, p. 573-558 | Zbl | MR

[31] Thomas Gauthier; Gabriel Vigny The geometric dynamical Northcott and Bogomolov properties, Ann. Sci. Éc. Norm. Supér. (4), Volume 58 (2025) no. 1, pp. 231-273 | Zbl | MR

[32] Walter Gubler Local heights of subvarieties over non-Archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | Zbl | DOI | MR

[33] Marc Hindry; Joseph H. Silverman Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | Zbl | DOI | MR

[34] Lars Kühne Equidistribution in Families of Abelian Varieties and Uniformity (2021) | arXiv

[35] Robert Lazarsfeld Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | Zbl | MR

[36] Niki Myrto Mavraki; Hexi Ye Quasi-adelic measures and equidistribution on 1 , Ergodic Theory Dyn. Syst., Volume 43 (2023) no. 8, pp. 2732-2779 | Zbl | DOI | MR

[37] Robert Rumely On Bilu’s equidistribution theorem, Spectral problems in geometry and arithmetic (Iowa City, IA, 1997) (Contemporary Mathematics), Volume 237, American Mathematical Society, 1997, pp. 159-166 | Zbl | DOI

[38] Robert Rumely; Chi Fong Lau; Robert Varley Existence of the sectional capacity, Memoirs of the American Mathematical Society, 690, American Mathematical Society, 2000, viii+130 pages | Zbl

[39] Joseph H. Silverman The space of rational maps on P 1 , Duke Math. J., Volume 94 (1998) no. 1, pp. 41-77 | MR | Zbl

[40] Lucien Szpiro; Emmanuel Ullmo; Shou-Wu Zhang Équirépartition des petits points, Invent. Math., Volume 127 (1997) no. 2, pp. 337-347 | MR | Zbl | DOI

[41] Amaury Thuillier Théorie du potentiel sur les courbes en géométrie analytique non archimédienne : applications à la théorie d’Arakelov, Ph. D. Thesis, Université Rennes 1 (2005) (under the direction of Chambert-Loir, Antoine, https://theses.hal.science/tel-00010990)

[42] Emmanuel Ullmo Positivité et discrétion des points algébriques des courbes, Ann. Math., Volume 147 (1998) no. 1, pp. 167-179 | DOI | Zbl

[43] Xinyi Yuan Big line bundles over arithmetic varieties, Invent. Math., Volume 173 (2008) no. 3, pp. 603-649 | DOI | MR | Zbl

[44] Xinyi Yuan; Shou-Wu Zhang Adelic line bundles over quasi-projective varieties (2021) (to appear as Annals of Mathematics Studies, vol. 221, Princeton University Press, 2026, 280 pages) | arXiv

[45] Shou-Wu Zhang Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl

[46] Shou-Wu Zhang Small points and adelic metrics, J. Algebr. Geom., Volume 4 (1995) no. 2, pp. 281-300 | MR | Zbl

[47] Shou-Wu Zhang Equidistribution of small points on abelian varieties, Ann. Math., Volume 147 (1998) no. 1, pp. 159-165 | DOI | Zbl

Cité par Sources :