[Bonnes fonctions hauteurs sur des variétés quasi-projectives : équidistribution et applications en dynamique]
In the present article, we define a notion of good height functions on quasi-projective varieties $V$ defined over number fields and prove an equidistribution theorem of small points for such height functions. Those good height functions are defined as limits of height functions associated with semi-positive adelic metrization on big and nef $\mathbb{Q}$-line bundles on projective models of $V$ satisfying mild assumptions.
Building on a recent work of the author and Vigny as well as on a classical estimate of Call and Silverman, and inspiring from recent works of Kühne and Yuan and Zhang, we deduce the equidistribution of generic sequence of preperiodic parameters for families of polarized endomorphisms with marked points.
Dans cet article, nous définissons une notion de bonne fonction hauteur sur une variété quasi-projective $V$ définie sur un corps de nombres et nous prouvons un théorème d’équidistribution des petits points pour de telles fonctions hauteurs. Ces bonnes fonctions hauteurs sont définies comme des limites de fonctions hauteurs associées à des suites de $\mathbb{Q}$-fibrés en droites munis de métrisations adéliques semi-positives sur des modèles projectifs de $V$ satisfaisant des hypothèses assez générales.
En nous appuyant sur un récent travail de l’auteur et Vigny, ainsi que sur des estimées classiques de Call et Silverman, et en nous inspirant de travaux récents de Kühne et de Yuan et Zhang, nous en déduisons un résultat d’équidistribution pour les suites génériques de paramètres prépériodiques pour des familles d’endomorphismes polarisés munis de points marqués.
Accepté le :
Publié le :
Thomas Gauthier  1
CC-BY 4.0
@article{AFST_2026_6_35_1_57_0,
author = {Thomas Gauthier},
title = {Good height functions on quasi-projective varieties: equidistribution and applications in dynamics},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {57--94},
year = {2026},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 35},
number = {1},
doi = {10.5802/afst.1841},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1841/}
}
TY - JOUR AU - Thomas Gauthier TI - Good height functions on quasi-projective varieties: equidistribution and applications in dynamics JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2026 SP - 57 EP - 94 VL - 35 IS - 1 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1841/ DO - 10.5802/afst.1841 LA - en ID - AFST_2026_6_35_1_57_0 ER -
%0 Journal Article %A Thomas Gauthier %T Good height functions on quasi-projective varieties: equidistribution and applications in dynamics %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2026 %P 57-94 %V 35 %N 1 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1841/ %R 10.5802/afst.1841 %G en %F AFST_2026_6_35_1_57_0
Thomas Gauthier. Good height functions on quasi-projective varieties: equidistribution and applications in dynamics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 57-94. doi: 10.5802/afst.1841
[1] Preperiodic points and unlikely intersections, Duke Math. J., Volume 159 (2011) no. 1, pp. 1-29 | Zbl | MR
[2] Special curves and postcritically finite polynomials, Forum Math. Pi, Volume 1 (2013), e3, 35 pages | Zbl | MR
[3] Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier, Volume 56 (2006) no. 3, pp. 625-688 | Zbl | Numdam | DOI | MR
[4] Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010, xxxiv+428 pages | DOI | Zbl | MR
[5] Bifurcation currents in holomorphic dynamics on , J. Reine Angew. Math., Volume 608 (2007), pp. 201-235 | Zbl | MR
[6] Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J., Volume 201 (2011), pp. 23-43 | DOI | Zbl | MR
[7] Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010) no. 2, pp. 337-394 | Zbl | DOI | MR
[8] Limit distribution of small points on algebraic tori, Duke Math. J., Volume 89 (1997) no. 3, pp. 465-476 | Zbl | MR
[9] Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | Zbl | MR
[10] Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 124 pages | Zbl | MR
[11] On postcritically finite unicritical polynomials, New York J. Math., Volume 24 (2018), pp. 1111-1122 | Zbl | MR
[12] Bifurcation Measure and Postcritically Finite Rational Maps, Complex dynamics. Families and friends (Dierk Schleicher, ed.), A K Peters, 2009, pp. 491-512 | Zbl | DOI
[13] The distribution of Galois orbits of points of small height in toric varieties, Am. J. Math., Volume 141 (2019) no. 2, pp. 309-381 | Zbl | MR
[14] Canonical heights on varieties with morphisms, Compos. Math., Volume 89 (1993) no. 2, pp. 163-205 | Zbl | Numdam | MR
[15] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl | MR
[16] Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II (London Mathematical Society Lecture Note Series), Volume 384, Cambridge University Press, 2011, pp. 1-50 | Zbl
[17] Formes différentielles réelles et courants sur les espaces de Berkovich (2012) | arXiv
[18] Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 977-1014 | Zbl | Numdam | DOI | MR
[19] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | Zbl | DOI | MR
[20] Discontinuity of a degenerating escape rate, Conform. Geom. Dyn., Volume 22 (2018), pp. 33-44 | Zbl | DOI | MR
[21] Bifurcation measures and quadratic rational maps, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 1, pp. 149-180 | Zbl | DOI | MR
[22] The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse, Math. (6), Volume 22 (2013) no. 3, pp. 445-464 | Zbl | Numdam | DOI | MR
[23] Distribution of rational maps with a preperiodic critical point, Am. J. Math., Volume 130 (2008) no. 4, pp. 979-1032 | Zbl | DOI | MR
[24] Distribution of postcritically finite polynomials, Isr. J. Math., Volume 209 (2015) no. 1, pp. 235-292 | DOI | Zbl | MR
[25] The arithmetic of polynomial dynamical pairs, Annals of Mathematics Studies, 214, Princeton University Press, 2022, xvii+232 pages | Zbl | MR
[26] Equidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., Volume 335 (2006) no. 2, pp. 311-361 corrigendum in ibid. 339 (2007), no. 4, p. 799-801 | Zbl | DOI | MR
[27] Heights in families of abelian varieties and the geometric Bogomolov conjecture, Ann. Math., Volume 189 (2019) no. 2, pp. 527-604 | Zbl
[28] Dynamical pairs with an absolutely continuous bifurcation measure, Ann. Fac. Sci. Toulouse, Math. (6), Volume 32 (2023) no. 2, pp. 203-230 | Zbl | Numdam | DOI | MR
[29] Approximation of non-archimedean Lyapunov exponents and applications over global fields, Trans. Am. Math. Soc., Volume 373 (2020) no. 12, pp. 8963-9011 | Zbl | DOI | MR
[30] Complex Dynamics of birational maps of defined over a number field, J. Anal. Math., Volume 127 (2025) no. 2, p. 573-558 | Zbl | MR
[31] The geometric dynamical Northcott and Bogomolov properties, Ann. Sci. Éc. Norm. Supér. (4), Volume 58 (2025) no. 1, pp. 231-273 | Zbl | MR
[32] Local heights of subvarieties over non-Archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | Zbl | DOI | MR
[33] Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | Zbl | DOI | MR
[34] Equidistribution in Families of Abelian Varieties and Uniformity (2021) | arXiv
[35] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | Zbl | MR
[36] Quasi-adelic measures and equidistribution on , Ergodic Theory Dyn. Syst., Volume 43 (2023) no. 8, pp. 2732-2779 | Zbl | DOI | MR
[37] On Bilu’s equidistribution theorem, Spectral problems in geometry and arithmetic (Iowa City, IA, 1997) (Contemporary Mathematics), Volume 237, American Mathematical Society, 1997, pp. 159-166 | Zbl | DOI
[38] Existence of the sectional capacity, Memoirs of the American Mathematical Society, 690, American Mathematical Society, 2000, viii+130 pages | Zbl
[39] The space of rational maps on , Duke Math. J., Volume 94 (1998) no. 1, pp. 41-77 | MR | Zbl
[40] Équirépartition des petits points, Invent. Math., Volume 127 (1997) no. 2, pp. 337-347 | MR | Zbl | DOI
[41] Théorie du potentiel sur les courbes en géométrie analytique non archimédienne : applications à la théorie d’Arakelov, Ph. D. Thesis, Université Rennes 1 (2005) (under the direction of Chambert-Loir, Antoine, https://theses.hal.science/tel-00010990)
[42] Positivité et discrétion des points algébriques des courbes, Ann. Math., Volume 147 (1998) no. 1, pp. 167-179 | DOI | Zbl
[43] Big line bundles over arithmetic varieties, Invent. Math., Volume 173 (2008) no. 3, pp. 603-649 | DOI | MR | Zbl
[44] Adelic line bundles over quasi-projective varieties (2021) (to appear as Annals of Mathematics Studies, vol. 221, Princeton University Press, 2026, 280 pages) | arXiv
[45] Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl
[46] Small points and adelic metrics, J. Algebr. Geom., Volume 4 (1995) no. 2, pp. 281-300 | MR | Zbl
[47] Equidistribution of small points on abelian varieties, Ann. Math., Volume 147 (1998) no. 1, pp. 159-165 | DOI | Zbl
Cité par Sources :