logo AFST

Functoriality and the Inverse Galois problem II: groups of type B n and G 2
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 1, pp. 37-70.

Cet article donne une application du principe de fonctorialité de Langlands au problème classique suivant  : quels groupes finis, en particulier quels groupes simples, apparaissent comme groupes de Galois sur   ? Soit une nombre premier et t un entier positif. Nous montrons que les groupes finis simples de type de Lie B n ( k )=3DSO 2n+1 (𝔽 k ) der lorsque 3,5(mod8) et G 2 ( k ) sont des groupes de Galois sur pour un entier k divisant t. En particulier, pour chacun de ces deux types de Lie et pour un entier fixé, nous construisons une infinité de groupes de Galois, mais nous n’avons pas de contrôle précis sur k.

This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over ? Let be a prime and t a positive integer. We show that that the finite simple groups of Lie type B n ( k )=3DSO 2n+1 (𝔽 k ) der if 3,5(mod8) and G 2 ( k ) appear as Galois groups over , for some k divisible by t. In particular, for each of the two Lie types and fixed we construct infinitely many Galois groups but we do not have a precise control of k.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1235
@article{AFST_2010_6_19_1_37_0,
     author = {Chandrashekhar Khare and Michael Larsen and Gordan Savin},
     title = {Functoriality and the Inverse Galois problem II: groups of type $B_n$ and $G_2$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {37--70},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 19},
     number = {1},
     year = {2010},
     doi = {10.5802/afst.1235},
     zbl = {1194.11063},
     mrnumber = {2597780},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1235/}
}
Chandrashekhar Khare; Michael Larsen; Gordan Savin. Functoriality and the Inverse Galois problem II: groups of type $B_n$ and $G_2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 1, pp. 37-70. doi : 10.5802/afst.1235. https://afst.centre-mersenne.org/articles/10.5802/afst.1235/

[Ca] Carter (R.).— Finite Groups of Lie Type, Wiley Classics Library, New York, 1993. | MR 1266626 | Zbl 0567.20023

[CKPS] Cogdell (J.), Kim (H.), Piatetski-Shapiro (I.) and Shahidi (F.).— Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. No. 99, p. 163-233 (2004). | Numdam | MR 2075885 | Zbl 1090.22010

[Cl] Clozel (L.).— Représentations galoisiennes associées aux représentations automorphes autoduales de GL (n). Inst. Hautes Études Sci. Publ. Math. No. 73, p. 97-145 (1991). | Numdam | MR 1114211 | Zbl 0739.11020

[DR] DeBacker (S.) and Reeder (M.).— Depth zero supercuspidal L-packets and their stability. Annals of Math. 169, No. 3, p. 795-901 (2009). | MR 2480618 | Zbl pre05578757

[Ga] Gan (W. T.).— Exceptional Howe correspondences over finite fields. Compositio Math. 118, p. 323-344 (1999). | MR 1711303 | Zbl 0939.20010

[GaS1] Gan (W. T.) and Savin (G.).— Real and global lifts from PGL 3 to G 2 . Inter. Math. Res. Not. 50, p. 2699-2724 (2003). | MR 2017248 | Zbl 1037.22033

[GaS2] Gan (W. T.) and Savin (G.).— Endoscopic lifts from PGL 3 to G 2 . Compositio Math. 140, p. 793-808 (2004). | MR 2041781 | Zbl 1071.22007

[GR] Gross (B. H.) and Reeder (M.).— Arithmetic invariants of discrete Langlands parameters. In preparation.

[GRS] Ginzburg (D.), Rallis (S.) and Soudry (D.).— A tower of theta correspondences for G 2 . Duke Math. J. 88, p. 537-624 (1997). | MR 1455531 | Zbl 0881.11051

[GrS] Gross (B. H.) and Savin (G.).— Motives with Galois group of type G 2 : an exceptional theta correspondence. Compositio Math. 114, p. 153-217 (1998). | MR 1661756 | Zbl 0931.11015

[Ha] Harris (M.).— Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications. to appear in Algebra, Arithmetic, and Geometry: Manin Festschrift (Birkhuser, in press).

[HPS] Huang (J. S.), Pandžić (P.) and Savin (G.).— New dual pair correspondences. Duke Math. J. 82, p. 447-471 (1996). | MR 1387237 | Zbl 0865.22009

[HT] Harris (M.), Taylor (R.).— The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, 151. Princeton University Press, Princeton, NJ, 2001. viii+276 pp. | MR 1876802 | Zbl 1036.11027

[Hu1] Humphreys (J. E.).— Linear Algebraic Groups. Graduate Texts in Mathematics, 21. Springer-Verlag, New York, 1975. | MR 396773 | Zbl 0325.20039

[Hu2] Humphreys (J. E.).— Conjugacy classes in semi-simple algebraic groups. Mathematical Surveys and Monographs, 43. American Mathematical Society, Providence, RI, 1995. | MR 1343976 | Zbl 0834.20048

[JS1] Jiang (D.), Soudry (D.).— The local converse theorem for SO(2n+1) and applications. Ann. of Math. (2) 157 (2003), no. 3, 743-806. | MR 1983781 | Zbl 1049.11055

[JS2] Jiang (D.), Soudry (D.).— Lecture at the workshop on Automorphic Forms, Geometry and Arithmetic. Oberwolfach, February 2008. Announcement available at

[KLS] Khare (C.), Larsen (M.) and Savin (G.).— Functoriality and the inverse Galois problem. Compositio Math. 144 (2008), 541–564. | MR 2422339 | Zbl pre05292806

[KT] Kostrikin (A. I.) and Tiep (P. H.).— Orthogonal Decompositions and Integral Lattices, De Gruyter Expositions in Mathematics 15, Walter de Gruyter, Berlin - New York, 1994. | MR 1308713 | Zbl 0855.11033

[KW] Khare (C.) and Wintenberger (J-P.).— Serre’s modularity conjecture (I), Invent Math. 178, p. 485-504 (2009). | MR 2551763 | Zbl pre05636295

[La] Larsen (M.).— Maximality of Galois actions for compatible systems. Duke Math. J. 80, no. 3, p. 601-630 (1995). | MR 1370110 | Zbl 0912.11026

[LP] Larsen (M.) and Pink (R.).— Finite subgroups of algebraic groups. preprint available at

[MaS] Magaard (K.) and Savin (G.).— Exceptional theta correspondences. Compositio Math. 107, p. 89-123 (1997). | MR 1457344 | Zbl 0878.22011

[Moy] Moy (A.).— The irreducible orthogonal and symplectic Galois representations of a p-adic field (the tame case). Journal of Number Theory 10, p. 341-344 (1984). | MR 769787 | Zbl 0546.12009

[Mu] Muić (G.).— The unitary dual of p-adic G 2 . Duke Math. J. 90, p. 465-493 (1997). | MR 1480543 | Zbl 0896.22006

[Sa1] Savin (G.).— K-types of minimal representations (p-adic case). Glasnik Mat. Vol. 31(51), p. 93-99. | MR 1400528 | Zbl 0856.22020

[Sa2] Savin (G.).— Lifting of generic depth zero representations of classical groups. J. of Algebra 319, p. 3244-3258 (2008). | MR 2408316 | Zbl 1147.22008

[Sh] Sug Woo Shin.— Galois representations arising from some compact Shimura varieties. Preprint, IAS, (2008).

[Ta] Tadić (M.).— Representations of p-adic symplectic groups. Compositio Math. 90, p. 123-181 (1994). | Numdam | MR 1266251 | Zbl 0797.22008

[Ty] Taylor (R.).— Galois representations. Ann. Fac. Sci. Toulouse Math. 13, p. 73-119 (2004). | Numdam | MR 2060030 | Zbl 1074.11030

[W] Wiese (G.).— On projective linear groups over finite fields as Galois groups over the rational numbers. Modular Forms on Schiermonnikoog edited by Bas Edixhoven, Gerard van der Geer and Ben Moonen. Cambridge University Press, p. 343-350 (2008). | MR 2530980 | Zbl pre05503861