@article{AFST_1993_6_2_2_253_0, author = {Charles D. Horvath}, title = {Extension and {Selection} theorems in {Topological} spaces with a generalized convexity structure}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {253--269}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 2}, number = {2}, year = {1993}, zbl = {0799.54013}, mrnumber = {1253391}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1993_6_2_2_253_0/} }
TY - JOUR AU - Charles D. Horvath TI - Extension and Selection theorems in Topological spaces with a generalized convexity structure JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1993 SP - 253 EP - 269 VL - 2 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1993_6_2_2_253_0/ LA - en ID - AFST_1993_6_2_2_253_0 ER -
%0 Journal Article %A Charles D. Horvath %T Extension and Selection theorems in Topological spaces with a generalized convexity structure %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1993 %P 253-269 %V 2 %N 2 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1993_6_2_2_253_0/ %G en %F AFST_1993_6_2_2_253_0
Charles D. Horvath. Extension and Selection theorems in Topological spaces with a generalized convexity structure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 2, pp. 253-269. https://afst.centre-mersenne.org/item/AFST_1993_6_2_2_253_0/
[1] Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), pp. 405-439. | MR | Zbl
) and ) .-[2] Nonexpensive mapping and hyperconvex spaces Contemp. Math 72 (1988), pp. 11-19. | MR | Zbl
) .-[3] Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl. 132 (1988), pp. 484-490. | MR | Zbl
) and ) .-[4] Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities, J. Math. Anal. Appl. 137 (1989), pp 46-58. | MR | Zbl
) and ) .-[5] The fixed point theory of multi-valued mappings in topological vector spaces, Math. Annalen 177 (1968), pp. 283-301. | MR | Zbl
) .-[6] Approximation of set valued functions and fixed point theorems, Ann. Mat. Pura Appl. 82 (1969), pp. 17-24. | MR | Zbl
) .-[7] A new minimax inequality on H-spaces with applications, Bull. Austral. Math. Soc. 41 (1990), pp. 457-473. | MR | Zbl
), ) and ) .-[8] Applications of a minimax inequality on H-spaces, Bull. Austral. Math. Soc. 41 (1990), pp. 475-485. | MR | Zbl
) ) and ), .-[9] An extension of Tietze's theorem, Pacific J. Math. 1 (1951), pp. 353-369. | MR | Zbl
) .-[10] Topology, Allyn and Bacon, Boston, 1966. | MR | Zbl
) .-[11] Complete regularity as a separation axiom, Canada J. Math. 21 (1969), pp. 96-105. | MR | Zbl
) and ) .-[12] Some results on multivalued mappings and inequalities without convexity, in nonlinear and convex analysis, (Ed. B. L. Lin and S. Simons), Lecture Notes in Pure and Appl. Math., Marcel Dekker (1987), pp. 99-106. | MR | Zbl
) . -[13] Contractibility and generalized convexity, J. Math. Ana. Appl. 156, n° 2 (1991), pp. 341-357. | MR | Zbl
) .-[14] Continuous selections, Ann. Math. 63 (1956), pp. 361-382. | MR | Zbl
) .-[15] Hyperconvexity and Approximate Fixed points, Non linear Ana. 13, n° 7 (1989), pp. 863-869. | MR | Zbl
) .-[16] Pseudo-boundaries and Pseudo-interiors for topological convexities, Dissertationes Mathematicae, CCX, Warszawa P.X.N. (1983). | MR | Zbl
) .-[17] Convexity preserving mappings in subbase convexity theory, Proc. Kon. Ned. Acad. Wet. A 81 (1977), pp. 76-90. | MR | Zbl
) and ) .-[18] Path connectedness, contractibility and LC-properties of superextensions, Bull. Acad. Polo. Sci. XXVI 3 (1978), pp. 261-269. | MR | Zbl
) and ) .-