We investigate Prékopa-Leindler type inequalities on a Riemannian manifold equipped with a measure with density where the potential and the Ricci curvature satisfy for all , with some . As in our earlier work [14], the argument uses optimal mass transport on , but here, with a special emphasis on its connection with Jacobi fields. A key role will be played by the differential equation satisfied by the determinant of a matrix of Jacobi fields. We also present applications of the method to logarithmic Sobolev inequalities (the Bakry-Emery criterion will be recovered) and to transport inequalities. A study of the displacement convexity of the entropy functional completes the exposition.
Nous étudions l’extension d’inégalités de type Prékopa- Leindler au cas d’une variété riemannienne équipée d’une mesure ayant une densité où le potentiel et la courbure de Ricci vérifient , pour un certain . Nous ferons appel, comme dans notre travail précédent [14], au transport optimal de mesure. Mais nous exploiterons plus encore son lien avec les champs de Jacobi, ce qui permettra de ramener la discussion à l’étude du déterminant d’une matrice de champs de Jacobi. Nous présentons également d’autres applications de la méthode, en particulier aux inégalités de Sobolev logarithmiques (critère de Bakry-Emery) et à l’étude de la convexité de déplacement de la fonctionnelle entropie.
Dario Cordero-Erausquin 1; Robert J. McCann 2; Michael Schmuckenschläger 3
@article{AFST_2006_6_15_4_613_0, author = {Dario Cordero-Erausquin and Robert J. McCann and Michael Schmuckenschl\"ager}, title = {Pr\'ekopa{\textendash}Leindler type inequalities on {Riemannian} manifolds, {Jacobi} fields, and optimal transport}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {613--635}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {4}, year = {2006}, doi = {10.5802/afst.1132}, mrnumber = {2295207}, zbl = {1125.58007}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1132/} }
TY - JOUR AU - Dario Cordero-Erausquin AU - Robert J. McCann AU - Michael Schmuckenschläger TI - Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 613 EP - 635 VL - 15 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1132/ DO - 10.5802/afst.1132 LA - en ID - AFST_2006_6_15_4_613_0 ER -
%0 Journal Article %A Dario Cordero-Erausquin %A Robert J. McCann %A Michael Schmuckenschläger %T Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 613-635 %V 15 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1132/ %R 10.5802/afst.1132 %G en %F AFST_2006_6_15_4_613_0
Dario Cordero-Erausquin; Robert J. McCann; Michael Schmuckenschläger. Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 4, pp. 613-635. doi : 10.5802/afst.1132. https://afst.centre-mersenne.org/articles/10.5802/afst.1132/
[1] A remarkable measure preserving diffeomorphism between two convex bodies in ,, Geom. Dedicata, Volume 74 (1999), pp. 201-212 | MR | Zbl
[2] Gradient flows with metric and differentiable structures,and applications to the Wasserstein space (To appear in the Academy of Lincei proceedings on “Nonlinear evolution equations”, Rome) | Zbl
[3] Séminaire de Probabilités, Diffusions hypercontractives (Lecture Notes in Math), Volume 1123 (1985), pp. 177-206 | Numdam | MR | Zbl
[4] An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ. (1997), pp. 1-58 | MR | Zbl
[5] On a reverse form of the Brascamp-Lieb inequality, Invent. Math., Volume 134 (1998) no. 2, pp. 335-361 | MR | Zbl
[6] From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., Volume 10 (2000), pp. 1028-1052 | MR | Zbl
[7] Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl., Volume 80 (2001) no. 7, pp. 669-696 | MR | Zbl
[8] Convex set functions in -space, Period. Math. Hungar., Volume 6 (1975), pp. 111-136 | MR | Zbl
[9] On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Funct. Anal., Volume 22 (1976), pp. 366-389 | MR | Zbl
[10] Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., Volume 44 (1991), pp. 375-417 | MR | Zbl
[11] Contractions in the -Wasserstein length space and thermalization of granular media (to appear in Arch. Rational Mech. Anal.) | MR | Zbl
[12] Riemannian Geometry—a Modern Introduction, Cambridge Tracts in Math, Volume 108 (1993) | MR | Zbl
[13] Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal., Volume 161 (2002) no. 257–269 | MR | Zbl
[14] A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., Volume 146 (2001), pp. 219-257 | MR | Zbl
[15] A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., Volume 182 (2004) no. 2, pp. 307-332 | MR | Zbl
[16] Brunn-Minkowski inequality and its aftermath, J. Multivariate Anal. (1980) | MR | Zbl
[17] Riemannian Geometry, Springer-Verlag, 1990 | MR | Zbl
[18] The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., Volume 39 (2002) no. 3, pp. 355-405 | MR | Zbl
[19] A topological application of the isoperimetric inequality, Amer. J. Math., Volume 105 (1983), pp. 843-854 | MR | Zbl
[20] Contributions to the theory of convex bodies, Michigan Math. J., Volume 4 (1957), pp. 39-52 | MR | Zbl
[21] Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités, Volume 33 (1999), pp. 120-216 | Numdam | MR | Zbl
[22] Measure concentration, transportation cost, and functional inequalities, Summer School on Singular Phenomena and Scaling in Mathematical Models (2003)
[23] The concentration of measure phenomenon, American Mathematical Society, Providence, RI, 2001 | MR | Zbl
[24] On a certain converse of Hölder’s inequality, Acta Sci. Math., Volume 33 (1972), pp. 217-233 | MR | Zbl
[25] Ricci curvature for metric-measure spaces via optimal transport (preprint)
[26] Balls have the worst best Sobolev inequality (preprint) | Zbl
[27] Some deviation inequalities, Geom. Funct. Anal., Volume 1 (1991), pp. 188-197 | MR | Zbl
[28] Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles, Séminaire Bourbaki (2003) | Numdam | MR | Zbl
[29] A Convexity Principle for Interacting Gases and Equilibrium Crystals, Princeton University (1994) (Ph. D. Thesis)
[30] Existence and uniqueness of monotone measure-preserving maps, Duke. Math. J., Volume 80 (1995), pp. 309-323 | MR | Zbl
[31] A convexity principle for interacting gases, Adv. Math., Volume 128 (1997), pp. 153-179 | MR | Zbl
[32] Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001) no. 3, pp. 589-608 | MR | Zbl
[33] Asymptotic theory of finite-dimensional normed spaces, Springer-Verlag, Berlin, 1986 | MR
[34] The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1-2, pp. 101-174 | MR | Zbl
[35] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000), pp. 361-400 | MR | Zbl
[36] Logarithmic concave measures with application to stochastic programming, Acta Sci. Math., Volume 32 (1971), pp. 301-315 | MR | Zbl
[37] On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343 | MR | Zbl
[38] A concentration of measure phenomenon on uniformly convex bodies, GAFA Seminar (1992-1994) (1995), pp. 275-287 | MR | Zbl
[39] Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[40] Convex functionals of probability measures and nonlinear diffusions, J. Math. Pures Appl., Volume 84 (2005) | MR | Zbl
[41] Transport inequalities, gradient estimates, entropy and Ricci curvature, Comm. Pure Appl. Math., Volume 58 (2005), pp. 923-940 | MR | Zbl
[42] Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 11 (1994), pp. 411-425 | Numdam | MR | Zbl
[43] Graduate Studies in Math., Topics in Optimal Transportation, Volume 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
Cited by Sources: