On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 221-242.

We will prove that the Pierce-Birkhoff Conjecture holds for non-singular two-dimensional affine real algebraic varieties over real closed fields, i.e., if W is such a variety, then every piecewise polynomial function on W can be written as suprema of infima of polynomial functions on W. More precisely, we will give a proof of the so-called Connectedness Conjecture for the coordinate rings of such varieties, which implies the Pierce-Birkhoff Conjecture.

DOI: 10.5802/afst.1283

Sven Wagner 1

1 Universität Konstanz Fachbereich Mathematik und Statistik 78457 Konstanz, Germany
@article{AFST_2010_6_19_S1_221_0,
     author = {Sven Wagner},
     title = {On the {Pierce-Birkhoff} {Conjecture} for {Smooth} {Affine} {Surfaces} over {Real} {Closed} {Fields}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {221--242},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 19},
     number = {S1},
     year = {2010},
     doi = {10.5802/afst.1283},
     mrnumber = {2675729},
     zbl = {1210.14069},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1283/}
}
TY  - JOUR
AU  - Sven Wagner
TI  - On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2010
SP  - 221
EP  - 242
VL  - 19
IS  - S1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1283/
DO  - 10.5802/afst.1283
LA  - en
ID  - AFST_2010_6_19_S1_221_0
ER  - 
%0 Journal Article
%A Sven Wagner
%T On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2010
%P 221-242
%V 19
%N S1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1283/
%R 10.5802/afst.1283
%G en
%F AFST_2010_6_19_S1_221_0
Sven Wagner. On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 221-242. doi : 10.5802/afst.1283. https://afst.centre-mersenne.org/articles/10.5802/afst.1283/

[AJM95] D. Alvis, B. L. Johnston, and J. J. Madden. Complete ideals defined by sign conditions and the real spectrum of a two-dimensional local ring. Mathematische Nachrichten, 174:21 – 34, 1995. | MR | Zbl

[BCR98] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer-Verlag, 1998. | MR | Zbl

[LMSS07] F. Lucas, J. J. Madden, D. Schaub, and M. Spivakovsky. On connectedness of sets in the real spectra of polynomial rings. Preprint, 2007. | MR | Zbl

[Mad89] J. J. Madden. Pierce-Birkhoff rings. Archiv der Mathematik, 53:565 – 570, 1989. | MR | Zbl

[Mah84] L. Mahé. On the Pierce-Birkhoff conjecture. Rocky Mountain Journal of Mathematics, 14:983 – 985, 1984. | MR | Zbl

[ZS60] O. Zariski and P. Samuel. Commutative Algebra, volume II. Van Nostrand, 1960. | MR | Zbl

Cited by Sources: