logo AFST
About the analogy between optimal transport and minimal entropy
Ivan Gentil; Christian Léonard; Luigia Ripani
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 3, p. 569-600

We describe some analogy between optimal transport and the Schrödinger problem where the transport cost is replaced by an entropic cost with a reference path measure. A dual Kantorovich type formulation and a Benamou–Brenier type representation formula of the entropic cost are derived, as well as contraction inequalities with respect to the entropic cost. This analogy is also illustrated with some numerical examples where the reference path measure is given by the Brownian motion or the Ornstein–Uhlenbeck process.

Our point of view is measure theoretical, rather than based on stochastic optimal control, and the relative entropy with respect to path measures plays a prominent role.

Nous décrivons des analogies entre le transport optimal et le problème de Schrödinger lorsque le coût du transport est remplacé par un coût entropique avec une mesure de référence sur les trajectoires. Une formule duale de Kantorovich, une formulation de type Benamou–Brenier du coût entropique sont démontrées, ainsi que des inégalités de contraction par rapport au coût entropique. Cette analogie est aussi illustrée par des exemples numériques où la mesure de référence sur les trajectoires est donnée par le mouvement Brownien ou bien le processus d’Ornstein–Uhlenbeck.

Notre approche s’appuie sur la théorie de la mesure, plutôt que sur le contrôle optimal stochastique, et l’entropie relative joue un rôle fondamental.

Received : 2015-11-04
Accepted : 2016-05-13
Published online : 2017-06-13
DOI : https://doi.org/10.5802/afst.1546
Keywords: Schrödinger problem, entropic interpolation, Wasserstein distance, Kantorovich duality
@article{AFST_2017_6_26_3_569_0,
     author = {Ivan Gentil and Christian L\'eonard and Luigia Ripani},
     title = {About the analogy between optimal transport and minimal entropy},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {3},
     year = {2017},
     pages = {569-600},
     doi = {10.5802/afst.1546},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2017_6_26_3_569_0}
}
Gentil, Ivan; Léonard, Christian; Ripani, Luigia. About the analogy between optimal transport and minimal entropy. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 3, pp. 569-600. doi : 10.5802/afst.1546. afst.centre-mersenne.org/item/AFST_2017_6_26_3_569_0/

[1] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2008, vii+334 pages

[2] Dominique Bakry; François Bolley; Ivan Gentil; Patrick Maheux Weighted Nash inequalities, Rev. Mat. Iberoam., Tome 28 (2012) no. 3, pp. 879-906

[3] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, Tome 348, Springer, 2014, xx+552 pages

[4] Dominique Bakry; Ivan Gentil; Michel Ledoux On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa, Tome 14 (2015) no. 3, pp. 705-727

[5] Jean-David Benamou; Yann Brenier A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., Tome 84 (2000) no. 3, pp. 375-393

[6] Jean-David Benamou; Guillaume Carlier; Marco Cuturi; Luca Nenna; Gabriel Peyré Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., Tome 37 (2015) no. 2, p. A1111-A1138

[7] Yongxin Chen; Tryphon Georgiou; Michele Pavon On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint, J. Optim. Theory Appl., Tome 169 (2016) no. 2, pp. 671-691

[8] Leonid Kantorovich On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS, Tome 37 (1942), pp. 199-201

[9] Kazumasa Kuwada Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates., Calc. Var. Partial Differ. Equ., Tome 54 (2015) no. 1, pp. 127-161

[10] Christian Léonard Convex conjugates of integral functionals, Acta Math. Hung., Tome 93 (2001) no. 4, pp. 253-280

[11] Christian Léonard Minimization of energy functionals applied to some inverse problems, Appl. Math. Optim., Tome 44 (2001) no. 3, pp. 273-297

[12] Christian Léonard From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct. Anal., Tome 262 (2012) no. 4, pp. 1879-1920

[13] Christian Léonard Girsanov theory under a finite entropy condition, Séminaire de Probabilités XLIV (Lecture Notes in Math.) Tome 2046 (2012), pp. 429-465

[14] Christian Léonard Some properties of path measures, Séminaire de probabilités de Strasbourg, vol. 46. (Lecture Notes in Mathematics) Tome 2123 (2014), pp. 207-230

[15] Christian Léonard A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete Contin. Dyn. Syst., Tome 34 (2014) no. 4, pp. 1533-1574

[16] Toshio Mikami; Michèle Thieullen Duality theorem for the stochastic optimal control problem, Stoch. Proc. Appl., Tome 116 (2006) no. 12, pp. 1815-1835

[17] E. Nelson Dynamical theories of Brownian motion, Princeton University Press, 1967, 142 pages

[18] Max-K von Renesse; Karl-Theodor Sturm Transport inequalities, gradient estimates, entropy, and Ricci curvature, Commun. Pure Appl. Math., Tome 58 (2005) no. 7, pp. 923-940

[19] Gilles Royer Une initiation aux inégalités de Sobolev logarithmiques, Cours spécialisés (Paris), Tome 5, Société Mathématique de France, 1999, 114 pages

[20] Daniel W. Stroock Partial differential equations for probabilists, Cambridge Studies in Advanced Mathematics, Tome 112, Cambridge University Press, 2008, xv+215 pages

[21] Cédric Villani Topics in optimal transportation, Graduate Studies in Mathematics, Tome 58, American Mathematical Society, 2003, xvi+370 pages

[22] Cédric Villani Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften, Tome 338, Springer, 2009, xxii+973 pages

[23] Jean-Claude Zambrini Variational processes and stochastic versions of mechanics, J. Math. Phys., Tome 27 (1986), pp. 2307-2330