logo AFST
Geometric diffusions of 1-currents
Yann Brenier
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, p. 831-846

We get diffusion equations of geometric nature for 1-currents through two different approaches. Partial existence and uniqueness results are discussed.

Nous obtenons, par deux approches différentes, des équations de diffusion de nature géométrique pour les 1-courants. Nous discutons quelques résultats d’existence et d’unicité.

Published online : 2017-12-13
DOI : https://doi.org/10.5802/afst.1554
@article{AFST_2017_6_26_4_831_0,
     author = {Yann Brenier},
     title = {Geometric diffusions of 1-currents},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     pages = {831-846},
     doi = {10.5802/afst.1554},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2017_6_26_4_831_0}
}
Brenier, Yann. Geometric diffusions of 1-currents. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 831-846. doi : 10.5802/afst.1554. afst.centre-mersenne.org/item/AFST_2017_6_26_4_831_0/

[1] Max Born; Leopold Infeld Foundations of the new field theory, Proc. R. Soc. Lond., Ser. A, Tome 144 (1934), pp. 425-451 | Article | Zbl 0008.42203

[2] Yann Brenier Hydrodynamic structure of the augmented Born-Infeld equations, Arch. Ration. Mech. Anal., Tome 172 (2004) no. 1, pp. 65-91 | Article | Zbl 1055.78003

[3] Yann Brenier Topology preserving diffusion of divergence-free vector fields, Commun. Math. Phys., Tome 330 (2014) no. 2, pp. 757-770 | Article | Zbl 1294.35077

[4] Pierre Degond; Francisco-Jos’e Mustieles A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput., Tome 11 (1990) no. 2, pp. 293-310 | Article | Zbl 0713.65090

[5] Nicola Gigli On the Heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differ. Equ., Tome 39 (2010) no. 1-2, pp. 101-120 | Article | Zbl 1200.35178

[6] Pierre-Louis Lions Mathematical topics in fluid mechanics. Vol. 1: Incompressible models, Oxford Lecture Series in Mathematics and its Applications, Tome 3, Clarendon Press, 1996, xiv+237 pages | Zbl 0866.76002

[7] Pierre-Louis Lions; Sylvie Mas-Gallic Une méthode particulaire déterministe pour des équations diffusives non linéaires, C. R. Acad. Sci., Paris, Sér. I, Math., Tome 332 (2001) no. 4, pp. 369-376 | Article | Zbl 0973.65003

[8] Henry Keith Moffatt Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology, J. Fluid Mech., Tome 159 (1985), pp. 359-378 | Article | Zbl 0616.76121

[9] Takahiro Nishiyama Construction of three-dimensional stationary Euler flows from pseudo-advected vorticity equations, Proc. R. Soc. Lond., Ser. A, Tome 459 (2003) no. 2038, pp. 2393-2398 | Article | Zbl 1041.76009

[10] Takahiro Nishiyama Magnetohydrodynamic approaches to measure-valued solutions of the two-dimensional stationary Euler equations, Bull. Inst. Math., Acad. Sin. (N.S.), Tome 2 (2007) no. 2, pp. 139-154 | Zbl 1211.76154

[11] Joseph Polchinski String theory. Volume I: An introduction to the Bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1998, xix+402 pages | Zbl 1006.81521

[12] Stanislav Konstantinovich Smirnov Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersbg. Math. J., Tome 5 (1994) no. 4, pp. 841-867 | Zbl 0832.49024