logo AFST
Densely related groups
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 4, pp. 619-653.

We study the class of densely related groups. These are finitely generated (or more generally, compactly generated locally compact) groups satisfying a strong negation of being finitely presented, in the sense that new relations appear at all scales. Here, new relations means relations that do not follow from relations of smaller size. Being densely related is a quasi-isometry invariant among finitely generated groups.

We check that a densely related group has none of its asymptotic cones simply connected. In particular a lacunary hyperbolic group cannot be densely related.

We prove that the Grigorchuk group is densely related. We also show that a finitely generated group that is (infinite locally finite)-by-cyclic and which satisfies a law must be densely related. Given a class 𝒞 of finitely generated groups, we consider the following dichotomy: every group in 𝒞 is either finitely presented or densely related. We show that this holds within the class of nilpotent-by-cyclic groups and the class of metabelian groups. In contrast, this dichotomy is no longer true for the class of 3-step solvable groups.

On s’intéresse à la classe des groupes densément présentés. Il s’agit des groupes de type fini (ou plus généralement des groupes localement compacts compactement engendrés) dans lesquels de nouvelles relations apparaissent à intervalles réguliers. Une relation est dite nouvelle si elle n’est pas conséquence de relations de longueur plus petites. Pour un groupe de type fini, être densément présenté est un invariant de quasi-isométrie.

On vérifie qu’un groupe densément présenté ne peut pas avoir de cône asymptotique simplement connexe. En particulier un groupe lacunaire hyperbolique n’est jamais densément présenté.

On montre que le groupe de Grigorchuk est densément présenté. On prouve également que tout groupe de type fini (non virtuellement cyclique) qui est (localement fini)-par- et qui satisfait une loi, est densément présenté. Étant donnée une classe 𝒞 de groupes de type fini, on considère l’alternative suivante : tout groupe dans 𝒞 est soit finiment présenté, soit densément présenté. On montre que cette alternative est satisfaite par la classe des groupes nilpotents-par-cyclique et la classe des groupes métabéliens. A contrario, cette dichotomie n’est plus vraie pour les groupes résolubles de classe 3.

Received: 2016-11-10
Accepted: 2017-05-24
Published online: 2019-12-09
DOI: https://doi.org/10.5802/afst.1611
Classification: 20F05,  20F65,  20F69,  20F16,  22D05
@article{AFST_2019_6_28_4_619_0,
     author = {Yves Cornulier and Adrien Le Boudec},
     title = {Densely related groups},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {4},
     year = {2019},
     pages = {619-653},
     doi = {10.5802/afst.1611},
     language = {en},
     url = {afst.centre-mersenne.org/item/AFST_2019_6_28_4_619_0/}
}
Cornulier, Yves; Le Boudec, Adrien. Densely related groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 4, pp. 619-653. doi : 10.5802/afst.1611. https://afst.centre-mersenne.org/item/AFST_2019_6_28_4_619_0/

[1] Juan M. Alonso Finiteness conditions on groups and quasi-isometries, J. Pure Appl. Algebra, Tome 95 (1994) no. 2, pp. 121-129 | Article | MR 1293049 | Zbl 0823.20034

[2] Laurent Bartholdi Endomorphic presentations of branch groups, J. Algebra, Tome 268 (2003) no. 2, pp. 419-443 | Article | MR 2009317 | Zbl 1044.20015

[3] Gilbert Baumslag Wreath products and finitely presented groups, Math. Z., Tome 75 (1960/1961), pp. 22-28 | Article | MR 120269

[4] Gilbert Baumslag; Ralph Strebel Some finitely generated, infinitely related metabelian groups with trivial multiplicator, J. Algebra, Tome 40 (1976) no. 1, pp. 46-62 | Article | MR 422432 | Zbl 0353.20037

[5] Robert Bieri; Yves Cornulier; Luc Guyot; Ralph Strebel Infinite presentability of groups and condensation, J. Inst. Math. Jussieu, Tome 13 (2014) no. 4, pp. 811-848 | Article | MR 3249690 | Zbl 1358.20026

[6] Robert Bieri; J. R. J. Groves The geometry of the set of characters induced by valuations, J. Reine Angew. Math., Tome 347 (1984), pp. 168-195 | MR 733052 | Zbl 0526.13003

[7] Robert Bieri; Ralph Strebel Almost finitely presented soluble groups, Comment. Math. Helv., Tome 53 (1978) no. 2, pp. 258-278 | Article | MR 498863 | Zbl 0373.20035

[8] Robert Bieri; Ralph Strebel Valuations and finitely presented metabelian groups, Proc. Lond. Math. Soc., Tome 41 (1980) no. 3, pp. 439-464 | Article | MR 591649 | Zbl 0448.20029

[9] B. H. Bowditch Continuously many quasi-isometry classes of 2-generator groups, Comment. Math. Helv., Tome 73 (1998) no. 2, pp. 232-236 | Article | MR 1611695 | Zbl 0924.20032

[10] J. Brieussel; T. Zheng Speed of random walks, isoperimetry and compression of finitely generated groups (https://arxiv.org/abs/1510.08040)

[11] Yves Cornulier Finitely presented wreath products and double coset decompositions, Geom. Dedicata, Tome 122 (2006), pp. 89-108 | Article | MR 2295543 | Zbl 1137.20019

[12] Yves Cornulier; Pierre de la Harpe Metric geometry of locally compact groups, EMS Tracts in Mathematics, Tome 25, European Mathematical Society, 2016 (Winner of the 2016 EMS Monograph Award) | MR 3561300 | Zbl 1352.22001

[13] Yves Cornulier; Romain Tessera Dehn function and asymptotic cones of Abels’ group, J. Topol., Tome 6 (2013) no. 4, pp. 982-1008 | Article | MR 3145147 | Zbl 1311.20034

[14] R. Coulon; V. Guirardel Automorphisms and endomorphisms of lacunary hyperbolic groups (https://arxiv.org/abs/1606.00679) | Article | Zbl 07039920

[15] Cornelia Druţu Quasi-isometry invariants and asymptotic cones, Int. J. Algebra Comput., Tome 12 (2002) no. 1-2, pp. 99-135 | Article | MR 1902363 | Zbl 1010.20029

[16] Cornelia Druţu; Mark V. Sapir Tree-graded spaces and asymptotic cones of groups, Topology, Tome 44 (2005) no. 5, pp. 959-1058 (With an appendix by Denis Osin and Mark Sapir) | Article | MR 2153979 | Zbl 1101.20025

[17] R. I. Grigorchuk On Burnside’s problem on periodic groups, Funkts. Anal. Prilozh., Tome 14 (1980) no. 1, p. 53-54 | MR 565099 | Zbl 0595.20029

[18] R. I. Grigorchuk Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR, Ser. Mat., Tome 48 (1984) no. 5, pp. 939-985 | MR 764305 | Zbl 0583.20023

[19] R. I. Grigorchuk On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata, Groups St. Andrews 1997 in Bath, I (London Mathematical Society Lecture Note Series) Tome 260, Cambridge University Press, 1999, pp. 290-317 | Article | MR 1676626 | Zbl 1114.20303

[20] R. I. Grigorchuk; M. J. Mamaghani On use of iterates of endomorphisms for constructing groups with specific properties, Mat. Stud., Tome 8 (1997) no. 2, pp. 198-206 | MR 1685936 | Zbl 0932.20033

[21] M. Gromov Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Mathematical Society Lecture Note Series) Tome 182, Cambridge University Press, 1993, pp. 1-295 | MR 1253544 | Zbl 0888.53047

[22] Curtis Kent Asymptotic cones of HNN-extensions and amalgamated products, Algebr. Geom. Topol., Tome 14 (2014) no. 1, pp. 551-595 | Article | MR 3158768 | Zbl 1327.20046

[23] Adrien Le Boudec Locally compact lacunary hyperbolic groups, Groups Geom. Dyn., Tome 11 (2017) no. 2, pp. 415-454 | Article | MR 3668046 | Zbl 1422.20012

[24] I. G. Lysënok A set of defining relations for the Grigorchuk group, Mat. Zametki, Tome 38 (1985) no. 4, pp. 503-516 | MR 819415 | Zbl 0595.20030

[25] D. Meier Non-Hopfian groups, J. Lond. Math. Soc., Tome 26 (1982) no. 2, pp. 265-270 | Article | MR 675169 | Zbl 0504.20016

[26] Alexander Yu. Olʼshanskii; Denis V. Osin; Mark V. Sapir Lacunary hyperbolic groups, Geom. Topol., Tome 13 (2009) no. 4, pp. 2051-2140 (With an appendix by Michael Kapovich and Bruce Kleiner) | Article | MR 2507115 | Zbl 1243.20056

[27] P. Papasoglu On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality, J. Differ. Geom., Tome 44 (1996) no. 4, pp. 789-806 | Article | MR 1438192 | Zbl 0893.20029

[28] C. Reinfeldt; R. Weidmann Makanin-Razborov diagrams for hyperbolic groups (preprint)

[29] Z. Sela Endomorphisms of hyperbolic groups I: The Hopf property, Topology, Tome 38 (1999) no. 2, pp. 301-321 | Article | MR 1660337 | Zbl 0929.20033

[30] Simon Thomas Cayley graphs of finitely generated groups, Proc. Am. Math. Soc., Tome 134 (2006) no. 1, pp. 289-294 | Article | MR 2170570 | Zbl 1077.03029

[31] Simon Thomas; Boban Velickovic Asymptotic cones of finitely generated groups, Bull. Lond. Math. Soc., Tome 32 (2000) no. 2, pp. 203-208 | Article | MR 1734187 | Zbl 1021.20033