This paper is devoted to the study of smooth flows of density-dependent fluids in or in the torus . We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework.
Existence and uniqueness is stated on a time interval independent of the viscosity when goes to . A blow-up criterion involving the norm of vorticity in is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time interval , then the density-dependent Navier-Stokes equations with the same data and small viscosity have a smooth solution on . The viscous solution tends to the Euler solution when the viscosity goes to . The rate of convergence in is of order .
An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake.
Cet article est consacré à l’étude des fluides incompressibles à densité variable dans ou . On cherche à généraliser plusieurs résultats classiques pour les équations d’Euler et de Navier-Stokes incompressibles.
On établit un résultat d’existence et d’unicité sur un intervalle de temps indépendant de la viscosité du fluide ainsi qu’un critère d’explosion faisant intervenir la norme du tourbillon dans . On montre en outre que si les équations d’Euler ont une solution régulière sur un intervalle de temps donné alors les équations de Navier-Stokes avec mêmes données et petite viscosité ont une solution régulière sur le même intervalle de temps. De plus la solution visqueuse tend vers la solution d’Euler quand la viscosité tend vers 0. Le taux de convergence dans est de l’ordre de .
En appendice, on démontre des estimations a priori de type elliptique dans des espaces de Sobolev à indice positif ou négatif.
@article{AFST_2006_6_15_4_637_0, author = {Rapha\"el Danchin}, title = {The inviscid limit for density-dependent incompressible fluids}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {637--688}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {4}, year = {2006}, doi = {10.5802/afst.1133}, mrnumber = {2295208}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1133/} }
TY - JOUR AU - Raphaël Danchin TI - The inviscid limit for density-dependent incompressible fluids JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 637 EP - 688 VL - 15 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1133/ DO - 10.5802/afst.1133 LA - en ID - AFST_2006_6_15_4_637_0 ER -
%0 Journal Article %A Raphaël Danchin %T The inviscid limit for density-dependent incompressible fluids %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 637-688 %V 15 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1133/ %R 10.5802/afst.1133 %G en %F AFST_2006_6_15_4_637_0
Raphaël Danchin. The inviscid limit for density-dependent incompressible fluids. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 4, pp. 637-688. doi : 10.5802/afst.1133. https://afst.centre-mersenne.org/articles/10.5802/afst.1133/
[1] Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990 (Translated from the Russian) | MR | Zbl
[2] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Communications in Mathematical Physics, Volume 94 (1984), pp. 61-66 | MR | Zbl
[3] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales Scientifiques de l’école Normale Supérieure, Volume 14 (1981), pp. 209-246 | Numdam | MR | Zbl
[4] Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique, Volume 77 (1999), pp. 25-50 | MR | Zbl
[5] Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, 1988 | MR | Zbl
[6] A few remarks on the Camassa-Holm equation, Differential and Integral Equations, Volume 14 (2001), pp. 953-988 | MR | Zbl
[7] Density-dependent incompressible fluids in critical spaces, Proceedings of the Royal Society of Edinburgh, Volume 133A (2003), pp. 1311-1334 | MR | Zbl
[8] Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations, Volume 9 (2004), pp. 353-386 | MR | Zbl
[9] Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Revista Matemática Iberoamericana, Volume 21 (2005), pp. 861-886 | MR | Zbl
[10] Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Differential and Integral Equations, Volume 10 (1997), pp. 587-598 | MR | Zbl
[11] On the equation of nonstationary stratified fluid motion: uniqueness and existence of the solutions, Journal of the Faculty of Sciences of the University of Tokyo, Volume 30 (1984), pp. 615-643 | MR | Zbl
[12] Commutator estimates and the Euler and Navier-Stokes equations, Communications on Pure and Applied Mathematics, Volume 41 (1988), pp. 891-907 | MR | Zbl
[13] The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Mathematische Zeitschrift, Volume 242 (2002), pp. 251-278 | MR | Zbl
[14] The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, Journal of Soviet Mathematics, Volume 9 (1978), pp. 697-749 | Zbl
[15] Mathematical Topics in Fluid Dynamics, Incompressible Models, 1, Oxford University Press, 1996 | MR | Zbl
[16] Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 1996 no. 3 | MR | Zbl
[17] Hydrodynamics in Besov spaces, Archive for Rational Mechanics and Analysis, Volume 145 (1998), pp. 197-214 | MR | Zbl
Cited by Sources: