We give a self-contained exposition of local class field theory, via Lubin-Tate theory and the Hasse-Arf theorem, refining the arguments of Iwasawa [9].
Nous présentons une démonstration complète de la théorie du corps de classes locale via la théorie de Lubin-Tate et le théorème de Hasse-Arf, en raffinant des arguments d’Iwasawa [9].
@article{AFST_2008_6_17_2_411_0, author = {Teruyoshi Yoshida}, title = {Local {Class} {Field} {Theory} via {Lubin-Tate} {Theory}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {411--438}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {2}, year = {2008}, doi = {10.5802/afst.1188}, mrnumber = {2487860}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1188/} }
TY - JOUR AU - Teruyoshi Yoshida TI - Local Class Field Theory via Lubin-Tate Theory JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 411 EP - 438 VL - 17 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1188/ DO - 10.5802/afst.1188 LA - en ID - AFST_2008_6_17_2_411_0 ER -
%0 Journal Article %A Teruyoshi Yoshida %T Local Class Field Theory via Lubin-Tate Theory %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 411-438 %V 17 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1188/ %R 10.5802/afst.1188 %G en %F AFST_2008_6_17_2_411_0
Teruyoshi Yoshida. Local Class Field Theory via Lubin-Tate Theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 2, pp. 411-438. doi : 10.5802/afst.1188. https://afst.centre-mersenne.org/articles/10.5802/afst.1188/
[1] Atiyah (M.F.), Macdonald (I.G.).— Introduction to commutative algebra, Addison-Wesley, (1969). | MR | Zbl
[2] Carayol (H.).— Non-abelian Lubin-Tate theory, in : Automorphic Forms, Shimura Varieties, and L-functions (Academic Press, 1990), p. 15-39. | MR | Zbl
[3] Cassels (J.W.S.).— Local Fields, London Mathematical Society Student Texts 3, Cambridge Univ. Press, (1986). | MR | Zbl
[4] Coleman (R.).— Division values in local fields, Invent. Math. 53, p. 91-116 (1979). | MR | Zbl
[5] de Shalit (E.).— Relative Lubin-Tate groups, Proc. Amer. Math. Soc. 95, p. 1-4 (1985). | MR | Zbl
[6] Fesenko (I.B.), Vostokov (S.V.).— Local Fields and their Extensions, 2nd ed., Translations of Mathematical Monographs 121, AMS, (2002). | MR
[7] Gold (R.).— Local class field theory via Lubin-Tate groups, Indiana Univ. Math. J. 30, p. 795-798 (1981). | MR | Zbl
[8] Hazewinkel (M.).— Local class field theory is easy, Advances in Math. 18-2, p. 148-181 (1975). | MR | Zbl
[9] Iwasawa (K.).— Local Class Field Theory, Oxford Univ. Press, (1986). | MR | Zbl
[10] Lubin (J.).— The local Kronecker-Weber theorem, Trans. Amer. Math. Soc. 267-1, p. 133-138 (1981). | MR | Zbl
[11] Lubin (J.), Tate (J.).— Formal complex multiplication in local fields, Ann. Math. 81, p. 380-387 (1965). | MR | Zbl
[12] Neukirch (J.).— Class Field Theory, Grundlehren der Mathematischen Wissenschaften 280, Springer-Verlag, (1986). | MR | Zbl
[13] Rosen (M.).— An elementary proof of the Kronecker-Weber theorem, Trans. Amer. Math. Soc. 265-2, p. 599-605. (1981) | MR | Zbl
[14] Sen (S.).— On automorphisms of local fields, Ann. Math. 90 (1969), p. 33-46. | MR | Zbl
[15] Serre (J.-P.).— Corps Locaux, 2nd ed., Hermann, 1968. (English translation : Local fields, Graduate Texts in Mathematics 67, Springer-Verlag, (1979).) | MR | Zbl
[16] Serre (J.-P.).— Local class field theory, in : Algebraic Number Theory (Thompson, 1967), p. 128-161. | MR
Cited by Sources: