We consider the general degenerate parabolic equation :
We suppose that the flux is continuous, is nondecreasing continuous and both functions are not necessarily Lipschitz. We prove the existence of the renormalized solution of the associated Cauchy problem for initial data and source term. We establish the uniqueness of this type of solution under a structure condition and an assumption on the modulus of continuity of . The novelty of this work is that , , , , are not Lipschitz functions and the techniques are different from those developed in the previous works.
Nous considérons l’équation parabolique dégénérée général :
Nous supposons que le flux est continu, est continue et croissante au sens large et les deux fonctions ne sont pas nécessairement lipschitziennes. Nous prouvons l’existence de solution renormalisée du problème de Cauchy associé à cette équation avec des données (terme source et condition initiale) dans . Nous établissons l’unicité de cette solution sous une condition dite de structure du type et sous une hypothèse sur le module de continuité de . La nouveauté dans le travail vient du fait que , , , , ne sont pas des fonctions nécessairement lipschitziennes et les techniques sont différentes de celles développées dans les travaux antérieurs.
@article{AFST_2008_6_17_3_597_0, author = {Mohamed Maliki and Adama Ouedraogo}, title = {Renormalized solution for nonlinear degenerate problems in the whole space}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {597--611}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {3}, year = {2008}, doi = {10.5802/afst.1194}, mrnumber = {2488233}, zbl = {1173.35565}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1194/} }
TY - JOUR AU - Mohamed Maliki AU - Adama Ouedraogo TI - Renormalized solution for nonlinear degenerate problems in the whole space JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 597 EP - 611 VL - 17 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1194/ DO - 10.5802/afst.1194 LA - en ID - AFST_2008_6_17_3_597_0 ER -
%0 Journal Article %A Mohamed Maliki %A Adama Ouedraogo %T Renormalized solution for nonlinear degenerate problems in the whole space %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 597-611 %V 17 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1194/ %R 10.5802/afst.1194 %G en %F AFST_2008_6_17_3_597_0
Mohamed Maliki; Adama Ouedraogo. Renormalized solution for nonlinear degenerate problems in the whole space. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 3, pp. 597-611. doi : 10.5802/afst.1194. https://afst.centre-mersenne.org/articles/10.5802/afst.1194/
[AW] Ammar (K.), Wittbold (P.).— Existence of renormalized solution of degnerate elliptic-parbolic problems Proc. Royal Soc. Edinb.113A, p. 477-496, (2003). | MR | Zbl
[AI] Andreianov (B.P.), Igbida (N.).— Uniqueness for Nonlinear degenerate diffusion-convection problem, to appear in J. Diff. Equat. | Zbl
[ABK] Andreianov (B.P.), Bénilan (Ph.), Kruzhkov (S.N.).— theory of scalar conservation law with continuous flux function. J. Funct. Anal, 171 p. 415-33 (2000). | Zbl
[AL] Alt (H.W.), Luckhauss (S.).— Quasi-linear elliptic-parabolic differential equations, Math.Z., 183, p. 311-341 (1983). | Zbl
[BCP] Bénilan (Ph.), Crandall (M.G.), Pazy (A.).— Evolution Equation governed by Accretive operators (book to appear).
[BBGPV] Bénilan (Ph.), Boccardo (L.), Gariepy (B.), Pierre (M.), Vazquez (J.L.).— An theory of exsitence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scul. Norm. Sup. 22(2) p. 241-273, (1995). | Numdam | MR | Zbl
[BCBT] Butos (M.C.), Concha (F.), Bürger (R.), Tory (E.M.).— Sedimentation and thickenning : phenomenological foundation and mathematical theory, Kluwer Academic, Dordrecht, (1999). | MR | Zbl
[BM] Blanchart (D.), Murat (F.).— Renormalized solutions of nonlinear parabolic problems with data : existence and uniqueness Proc.royal Soc. Edinb A 127, p. 1137-1152, (1997). | MR | Zbl
[BR] Blanchard (D.), Redouane (H.).— Solutions renormalisées d’équations paraboliques à deux non linéaritées. C.R.A.S. Paris 319, p. 831-847, (1994). | Zbl
[BG] Bénilan (Ph.), Gariepy (B.).— Strong solution of degenerate parabolic equation. J. Diff. Equat., 119, p. 473-502 (1995). | MR | Zbl
[BK] Bénilan (Ph.), Kruzhkov (S.N.).— Quasilinear first order equations with continuous non linearities. Russian Acad. Sci. Dokl. Math. Vol 50 , p. 391-396 (1995). | MR | Zbl
[BT1] Bénilan (Ph.), Touré (H.).— Sur l’équation générala C.R. Acad. Sc. Paris, serie 1, 299, 18 (1984). | Zbl
[BT2] Bénilan (Ph.), Touré (H.).— Sur l’équation générale dans . Etude du problème stationnaire, in Evolution equations, Lecture Notes Pure and Appl. Math Vol. 168, (1995).
[BT3] Bénilan (Ph.), Touré (H.).— Sur l’équation générale dans . Le problème d’évolution, Ann. Inst. Henri Poincaré, vol. 12, 6, p. 727-761 (1995). | Numdam | Zbl
[BW] Bénilan (Ph.), Wittbold (P.).— On mild and weak solution of elliptic-Parabolic Problems. Adv. in Diff. Equat. Vol. 1 (6) p. 1053-1072 (1996). | MR | Zbl
[C1] Carrillo (J.).— On the uniquness of the solution of the evolution DAM problem, Nonlinear Analysis, Vol 22, , p. 573-607 (1999). | MR | Zbl
[C2] Carrillo (J.).— Entropy solutions for nonlinear degenerate problems. Arch. Ratio. Mech. Anal. 147, p. 269-361 (1999). | MR | Zbl
[C3] Carrillo (J.).— Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport non linéaires C. R. Acad. Sc. Paris, t 33, Serie I, , (1986). | MR | Zbl
[CW] Carrillo (J.), Wittbold (P.).— Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Diff. Equat. 156, p. 93-121 (1999). | MR | Zbl
[CJ] Chavent (G.), Jaffre (J.).— Mathematical models and finite elements for reservoir simulation, North Holland, Amsterdam, (1986). | Zbl
[DT] Diaz (J.I.), Thelin (F.).— On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM. J. Math. Anal. ; 25, p. 1085-1111 (1994). | MR | Zbl
[GT] Gagneux (G.).— Tort (M.M.), Unicité des solutions faibles d’équations de diffusion convection, C. R. Acad. SC. Paris, t 318, Série I, p. 919-924 (1994). | MR | Zbl
[HV] Hudjaev (S.N.), Vol’pert (A.I.).— Cauchy’s problem for degenerate second order quasilinear parabolic equation, Math. USSR-Sbornik, Vol 7, , p. 365-387 (1969). | Zbl
[IU1] Igbida (N.), Urbano (J.M.).— Uniqueness for degenerate problems, NoDEA 10, p. 287-307 (2003). | MR | Zbl
[IU2] Igbida (N.), Urbano (J.M.).— Continuity results for certain nonlinear parabolic PDEs, Preprint LAMFA, Université de Picadie Jules Vernes.
[IW] Igbida (N.), Wittbold (P.).— Renormalized solution for stephan type problem : Existence and Uniqueness, Preprint LAMFA, Université de Picadie Jules Vernes.
[KA] Kruzhkov (S.N.), Panov (E. Yu.).— Conservative quasilinear first order law in the class of locally sommable functins, Dokl. Akad. Nauk. S.S.S.R. 220, 1 p. 233-26 ; english traduction in soviet Math. Dokl. 16 (1985).
[L] Landes (R.).— On the existence of weak solutions for quasilinear parabolic initial boundary-value problems.Proc. Royal Soc. Edinb. 89A:217-237, (1981). | MR | Zbl
[LSU] Ladyzenskaja (O.A.), Solonnikov (V.A.) et Ural’ceva (N.N.).— Linear and quasilinear equations of parabolic type, Transl. of Math. Monographs 23 (1968). | MR | Zbl
[M] Maliki (M.).— Continuous dependence of the entropy solution of general parabolic equation, Ann. Fac. Sci. Toulouse. Vol.XV,n¡3, p. 589-598 (2006). | Numdam | MR | Zbl
[MK] Bendahmane (M.), Karlsen (K.H.).— Renormalized solutions for quasilinear anisotropic degenerate parabolic equations, Siam J. Marth.Anal. Vol.36, N0.2, pp.405-422, (2004). | MR | Zbl
[MT1] Maliki (M.), Touré (H.).— Solution généralisée locale d’une équation parabolique quasi linéaire dégénérée du second ordre. Ann. Fac. Sci. Toulouse. Vol. VII 1, (1998) 113-133. | Numdam | MR | Zbl
[MT2] Maliki (M.), Touré ( H.).— Dépendence continue de solutions généralisées locales, Ann. Fac. Sci. Toulouse. Vol.X 4, (2001) 701-711. | Numdam | MR | Zbl
[MT3] Maliki (M.), Touré ( H.).— Uniqueness of entropy solutions for nonlinear degenerate parabolic problem Journal of Evolution equation 3 (2003), no. 4, 603–622. (Birkhauser). | MR | Zbl
[KP] Kruzhkov (S.N.), Panov E.Yu..— Conservative quasilinear first order laws with an infinite domain of dependence on the initial data, Soviet. Math. Dokl. Vol. 42, 2, p. 316-321 (1991). | MR | Zbl
[O] Otto (P.).— contraction and uniqueness for quasilinear elliptic-parobolic equations J. Diff. Eqa. 131, p. 20-38 (1996). | MR | Zbl
[YJ] Yin (J.).— On the uniqueness and stability of BV solutions for nonlinear diffusion equations, Comm. Part. Diff. Equat. 15, 12, p. 1671-1683 (1990). | MR | Zbl
Cited by Sources: