We give a different and probably more elementary proof of a good part of Jean Taylor’s regularity theorem for Almgren almost-minimal sets of dimension in . We use this opportunity to settle some details about almost-minimal sets, extend a part of Taylor’s result to almost-minimal sets of dimension in , and give the expected characterization of the closed sets of dimension in that are minimal, in the sense that for every closed set such that there is a bounded set so that out of and separates points of that separates.
On donne une démonstration différente et sans doute plus élémentaire d’une bonne partie du résultat de régularité de Jean Taylor sur les ensembles presque-minimaux d’Almgren. On en profite pour donner des précisions sur les ensembles presque minimaux, généraliser une partie du théorème de Taylor aux ensembles presque minimaux de dimension dans , et donner la caractérisation attendue des ensembles fermés de dimension dans qui sont minimaux, au sens où pour tout fermé tel qu’il existe une partie bornée telle que hors de et sépare les points de qui sont séparés par .
@article{AFST_2009_6_18_1_65_0, author = {Guy David}, title = {H\"older regularity of two-dimensional almost-minimal sets in $\mathbb{R}^n$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {65--246}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 18}, number = {1}, year = {2009}, doi = {10.5802/afst.1205}, mrnumber = {2518104}, zbl = {1213.49051}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1205/} }
TY - JOUR AU - Guy David TI - Hölder regularity of two-dimensional almost-minimal sets in $\mathbb{R}^n$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2009 SP - 65 EP - 246 VL - 18 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1205/ DO - 10.5802/afst.1205 LA - en ID - AFST_2009_6_18_1_65_0 ER -
%0 Journal Article %A Guy David %T Hölder regularity of two-dimensional almost-minimal sets in $\mathbb{R}^n$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2009 %P 65-246 %V 18 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1205/ %R 10.5802/afst.1205 %G en %F AFST_2009_6_18_1_65_0
Guy David. Hölder regularity of two-dimensional almost-minimal sets in $\mathbb{R}^n$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 1, pp. 65-246. doi : 10.5802/afst.1205. https://afst.centre-mersenne.org/articles/10.5802/afst.1205/
[Al1] Almgren (F. J.).— Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87, p. 321-391 (1968). | MR | Zbl
[Al2] Almgren (F. J.).— Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs of the Amer. Math. Soc. 165, volume 4, p. i-199 (1976). | MR | Zbl
[Bo] Bombieri (E.).— Regularity theory for almost minimal currents, Arch. Rational Mech. Anal. 78, n 2, p. 99-130 (1982). | MR | Zbl
[DMS] Dal Maso (G.), Morel (J.-M.) and Solimini (S.).— A variational method in image segmentation: Existence and approximation results, Acta Math. 168, n 1-2, p. 89-151 (1992). | MR | Zbl
[D1] David (G.).— Limits of Almgren-quasiminimal sets, Proceedings of the conference on Harmonic Analysis, Mount Holyoke, A.M.S. Contemporary Mathematics series, Vol. 320, p. 119-145 (2003). | MR | Zbl
[D2] David (G.).— Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics 233 (581p.), Birkhäuser 2005. | MR | Zbl
[D3] David (G.).— Quasiminimal sets for Hausdorff measures, Recent developments in nonlinear partial differential equations, p. 81-99, Contemp. Math., 439, Amer. Math. Soc., Providence, RI (2007). | MR | Zbl
[D4] David (G.).— -regularity for two-dimensional almost-minimal sets in , preprint, available on arXiv, Hal, or at http://mahery.math.u-psud.fr/ gdavid | Zbl
[DDT] David (G.), De Pauw (T.) and Toro (T.).— A generalization of Reifenberg’s theorem in , to appear, Geom. Funct. Anal. | Zbl
[DS] David (G.) and Semmes (S.).— Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the A.M.S. Number 687, volume 144 (2000). | MR | Zbl
[Do] Dold (A.).— Lectures on algebraic topology, Second edition, Grundlehren der Mathematishen Wissenschaften 200, Springer Verlag (1980). | MR | Zbl
[Du] Dugundji (J.).— Topology, Allyn and Bacon, Boston (1966). | MR | Zbl
[He] Heppes (A.).— Isogonal sphärischen Netze, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 7, p. 41-48 (1964). | MR | Zbl
[Fe] Federer (H.).— Geometric measure theory, Grundlehren der Mathematishen Wissenschaften 153, Springer Verlag (1969). | MR | Zbl
[Fv] Feuvrier (V.).— Un résultat d’existence pour les ensembles minimaux par optimisation sur des grilles polyédrales, Thèse de l’université de Paris-Sud 11, Orsay, Septembre 2008.
[La] Lamarle (E.).— Sur la stabilité des systèmes liquides en lames minces, Mém. Acad. R. Belg. 35, p. 3-104 (1864).
[LM] Lawlor (G.) and Morgan (F.).— Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math. 166, n 1, p. 55-83 (1994). | MR | Zbl
[Le] Lemenant (A.).— Sur la régularité des minimiseurs de Mumford-Shah en dimension 3 et supérieure, Thèse de l’université de Paris-Sud 11, Orsay, Juin 2008.
[Ma] Mattila (P.).— Geometry of sets and measures in Euclidean space, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press (l995). | MR | Zbl
[Mo1] Morgan (F.).— Area-minimizing currents bounded by higher multiples of curves, Rend. Circ. Mat. Palermo 33, p. 37-46 (1984). | MR | Zbl
[Mo2] Morgan (F.).— Size-minimizing rectifiable currents, Invent. Math. 96, n 2, p. 333-348 (1989). | Zbl
[Mo3] Morgan (F.).— -minimal curve regularity, Proc. Amer. Math. Soc. 120, n 3, p. 677-686 (1994). | MR | Zbl
[Mo4] Morgan (F.).— Geometric measure theory. A beginner’s guide, Second edition. Academic Press, Inc., San Diego, CA, x+175 pp (1995). | MR | Zbl
[R1] Reifenberg (E. R.).— Solution of the Plateau Problem for -dimensional surfaces of varying topological type, Acta Math. 104, p. 1-92 (1960). | MR | Zbl
[R2] Reifenberg (E. R.).— Epiperimetric Inequality related to the analyticity of minimal surfaces, Annals Math., 80, p. 1-14 (1964). | MR | Zbl
[R3] Reifenberg (E. R.).— On the analyticity of minimal surfaces, Annals of Math., 80, p. 15-21 (1964). | MR | Zbl
[SS] Schoen (R.) and Simon (L.).— A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals, Indiana Univ. Math. J. 31, n 3, p. 415-434 (1982). | MR | Zbl
[St] Stein (E. M.).— Singular integrals and differentiability properties of functions, Princeton university press (1970). | MR | Zbl
[Tam] Tamanini (I.).— Regularity results for almost minimal oriented hypersurfaces in , Quaderni del dipartimento di matematica dell’universitá di Lecce (1984).
[Tay] Taylor (J.).— The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103, n 3, p. 489-539 (1976). | MR | Zbl
Cited by Sources: