We consider a nondegenerate holomorphic map where is a compact Hermitian manifold of dimension larger than or equal to and is an open connected complex manifold of dimension . In this article we give criteria which permit to construct Ahlfors’ currents in .
On considère une application holomorphe non dégénérée où est une variété Hermitienne compacte de dimension supérieure ou égale à et est une variété complexe, connexe, ouverte de dimension . Dans cet article, nous donnons des critères qui permettent de construire des courants d’Ahlfors dans .
@article{AFST_2010_6_19_1_121_0, author = {Henry de Th\'elin}, title = {Ahlfors{\textquoteright} currents in higher dimension}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {121--133}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {1}, year = {2010}, doi = {10.5802/afst.1239}, mrnumber = {2597784}, zbl = {1195.32004}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1239/} }
TY - JOUR AU - Henry de Thélin TI - Ahlfors’ currents in higher dimension JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 121 EP - 133 VL - 19 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1239/ DO - 10.5802/afst.1239 LA - en ID - AFST_2010_6_19_1_121_0 ER -
%0 Journal Article %A Henry de Thélin %T Ahlfors’ currents in higher dimension %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 121-133 %V 19 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1239/ %R 10.5802/afst.1239 %G en %F AFST_2010_6_19_1_121_0
Henry de Thélin. Ahlfors’ currents in higher dimension. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 1, pp. 121-133. doi : 10.5802/afst.1239. https://afst.centre-mersenne.org/articles/10.5802/afst.1239/
[1] Brunella (M.).— Courbes entières et feuilletages holomorphes, Enseign. Math., 45, p. 195-216 (1999). | MR | Zbl
[2] Carlson (J.A.) and Griffiths (P.).— The order functions for entire holomorphic mappings, Proc. Tulane Univ. Program, p. 225-248 (1974). | MR | Zbl
[3] Chern (S.-S.).— The integrated form of the first main theorem for complex analytic mappings in several complex variables, Ann. of Math. (2), 71, p. 536-551 (1960). | MR | Zbl
[4] Chirka (E.M.).— Complex analytic sets, Kluwer Academic Publishers (1989). | MR | Zbl
[5] Demailly (J.-P.).— Complex analytic and algebraic geometry, http://www-fourier.ujf-grenoble.fr/demailly/books.html, 1997.
[6] Duval (J.).— Singularités des courants d’Ahlfors, Ann. Sci. Ecole Norm. Sup., 39, p. 527-533 (2006). | Numdam | MR
[7] Griffiths (P.).— Some remarks on Nevanlinna theory, Proc. Tulane Univ. Program, p. 1-11 (1974). | MR | Zbl
[8] Hirschfelder (J.J.).— The first main theorem of value distribution in several variables, Invent. Math., 8, p. 1-33 (1969). | MR | Zbl
[9] Lang (S.).— Introduction to complex hyperbolic spaces, Springer-Verlag (1987). | MR | Zbl
[10] McQuillan (M.).— Diophantine approximations and foliations, Inst. Hautes Etudes Sci. Publ. Math., 87, p. 121-174 (1998). | Numdam | MR | Zbl
[11] Range (R.M.).— Holomorphic functions and integral representations in several complex variables, Springer-Verlag (1986). | MR | Zbl
[12] Sibony (N.) and Wong (P.M.).— Some remarks on the Casorati-Weierstrass theorem, Ann. Polon. Math., 39, p. 165-174 (1981). | MR | Zbl
[13] Stoll (W.).— A general first main theorem of value distribution, Acta Math., 118, p. 111-191 (1967). | MR | Zbl
[14] Wu (H.).— Remarks on the first main theorem in equidistribution theory II, J. Differential Geometry, 2, p. 369-384 (1968). | MR | Zbl
Cited by Sources: