In this short paper, we show that the only proper holomorphic self-maps of bounded domains in whose iterates approach a strictly pseudoconvex point of the boundary are automorphisms of the euclidean ball. This is a Wong-Rosay type theorem for a sequence of maps whose degrees are a priori unbounded.
Dans cette note, nous prouvons que les seules auto-applications holomorphes propres des domaines bornés de dont les itérées accumulent un point de stricte-pseudoconvexité du bord sont des automorphismes de la boule. Il s’agit d’un résultat de type Wong-Rosay pour une suite d’applications dont les degrés sont à priori non bornés.
@article{AFST_2010_6_19_3-4_513_0, author = {Emmanuel Opshtein}, title = {A {Wong-Rosay} type theorem for proper holomorphic self-maps}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {513--524}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1254}, mrnumber = {2790806}, zbl = {1214.32006}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1254/} }
TY - JOUR AU - Emmanuel Opshtein TI - A Wong-Rosay type theorem for proper holomorphic self-maps JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 513 EP - 524 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1254/ DO - 10.5802/afst.1254 LA - en ID - AFST_2010_6_19_3-4_513_0 ER -
%0 Journal Article %A Emmanuel Opshtein %T A Wong-Rosay type theorem for proper holomorphic self-maps %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 513-524 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1254/ %R 10.5802/afst.1254 %G en %F AFST_2010_6_19_3-4_513_0
Emmanuel Opshtein. A Wong-Rosay type theorem for proper holomorphic self-maps. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 3-4, pp. 513-524. doi : 10.5802/afst.1254. https://afst.centre-mersenne.org/articles/10.5802/afst.1254/
[1] Alexander (H.).— Holomorphic mappings from the ball and polydisc. Math. Ann., 209:249-256 (1974). | MR | Zbl
[2] Bell (S.).— Local boundary behavior of proper holomorphic mappings. In Complex analysis of several variables (Madison, Wis., 1982), volume 41 of Proc. Sympos. Pure Math., p. 1-7. Amer. Math. Soc., Providence, RI (1984). | MR | Zbl
[3] Berteloot (F.).— Attraction des disques analytiques et continuité höldérienne d’applications holomorphes propres. In Topics in complex analysis (Warsaw, 1992), volume 31 of Banach Center Publ., p. 91-98. Polish Acad. Sci., Warsaw (1995). | MR | Zbl
[4] Boggess (A.).— CR manifolds and the tangential Cauchy-Riemann complex. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1991). | MR | Zbl
[5] Fornaess (J. E.).— Biholomorphic mappings between weakly pseudoconvex domains. Pacific J. Math., 74(1):63-65 (1978). | MR | Zbl
[6] MacCluer (B. D.).— Iterates of holomorphic self-maps of the unit ball in . Michigan Math. J., 30(1):97-106 (1983). | MR | Zbl
[7] Nagel (A.), Stein (E. M.), and Wainger (S.).— Balls and metrics defined by vector fields. I. Basic properties. Acta Math., 155(1-2):103-147 (1985). | MR | Zbl
[8] Opshtein (E.).— Sphericity and contractibility of strictly pseudoconvex hypersurfaces. Prepublication, arXiv math.CV/0504054 (2005).
[9] Opshtein (E.).— Dynamique des applications holomorphes propres des domaines réguliers et problème de l’injectivité. Math. Ann., 133(1):1-30 (2006). | MR | Zbl
[10] Ourimi (N.).— Some compactness theorems of families of proper holomorphic correspondences. Publ. Mat., 47(1):31-43 (2003). | MR | Zbl
[11] Pinčuk (S. I.).— The analytic continuation of holomorphic mappings. Mat. Sb. (N.S.), 98(140)(3(11)):416-435, 495-496 (1975). | MR | Zbl
[12] Rosay (J.-P.).— Sur une caractérisation de la boule parmi les domaines de par son groupe d’automorphismes. Ann. Inst. Fourier (Grenoble), 29(4):ix, p. 91-97 (1979). | Numdam | MR | Zbl
[13] Rudin (W.).— Function theory in the unit ball of , volume 241 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer-Verlag, New York (1980). | MR | Zbl
[14] Tumanov (A. E.) and Khenkin (G. M.).— Local characterization of holomorphic automorphisms of Siegel domains. Funktsional. Anal. i Prilozhen., 17(4):49-61 (1983). | MR | Zbl
[15] Webster (S. M.).— On the transformation group of a real hypersurface. Trans. Amer. Math. Soc., 231(1):179-190 (1977). | MR | Zbl
[16] Wong (B.).— Characterization of the unit ball in by its automorphism group. Invent. Math., 41(3):253-257 (1977). | MR | Zbl
Cited by Sources: