The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.
Les concepts de « semi-anneau » et d’« hypersurface tropicale » sont étendus au cas des groupes ordonnés quelconques. Ensuite, nous definissons la « tropicalisation » d’un polynôme à coefficients dans un corps valué. Après une étude détaillée de l’opérateur de tropicalisation, nous donnons une généralisation du théorème de Kapranov aux corps algébriquement clos munis d’une valuation à valeurs dans un groupe ordonné.
@article{AFST_2010_6_19_3-4_525_0, author = {Fuensanta Aroca}, title = {Krull-Tropical {Hypersurfaces}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {525--538}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1255}, mrnumber = {2790807}, zbl = {1223.14069}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1255/} }
TY - JOUR AU - Fuensanta Aroca TI - Krull-Tropical Hypersurfaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 525 EP - 538 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1255/ DO - 10.5802/afst.1255 LA - en ID - AFST_2010_6_19_3-4_525_0 ER -
%0 Journal Article %A Fuensanta Aroca %T Krull-Tropical Hypersurfaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 525-538 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1255/ %R 10.5802/afst.1255 %G en %F AFST_2010_6_19_3-4_525_0
Fuensanta Aroca. Krull-Tropical Hypersurfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 3-4, pp. 525-538. doi : 10.5802/afst.1255. https://afst.centre-mersenne.org/articles/10.5802/afst.1255/
[1] Aroca (F.).— Tropical geometry for fields with a krull valuation: First defiintions and a small result. Boletin de la SMM, 3a Serie Volumen 16 Numero 1 (2010).
[2] Einsiedler (M.), Kapranov (M.), and Lind (D.).— Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math., 601:139-157 (2006). arXiv:math.AG/0408311v2. | MR | Zbl
[3] Eisenbud (D.).— Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, (1995). With a view toward algebraic geometry. | MR | Zbl
[4] Gathmann (A.).— Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3-32 (2006). arXiv:math.AG/0601322v1". | MR | Zbl
[5] Itenberg (I.), Mikhalkin (G.), and Shustin (E.).— Tropical algebraic geometry, volume 35 of Oberwolfach Seminars. Birkhäuser Verlag, Basel (2007). | MR | Zbl
[6] Katz (E.).— A tropical toolkit. Expositiones Mathematicae, 27(1):1-36 (2009). arXiv:math/0610878. | MR | Zbl
[7] Krull (W.).— Allgemeine bewertungstheorie. J. Reine Angew. Math., 167:160-197 (1932). | Zbl
[8] Ribenboim (P.).— The theory of classical valuations. Springer Monographs in Mathematics. Springer-Verlag, New York (1999). | MR | Zbl
[9] Richter-Gebert (J.), Sturmfels (B.), and Theobald (T.).— First steps in tropical geometry. In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., pages 289-317. Amer. Math. Soc., Providence, RI, (2005). arXiv:math.AG/0306366. | MR | Zbl
[10] Shafarevich (I. R.).— Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, (1994). Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid. | MR | Zbl
[11] Spivakovsky (M.).— Valuations in function fields of surfaces. Amer. J. Math., 112(1):107-156 (1990). | MR | Zbl
[12] Zariski (O.) and Samuel (P.).— Commutative algebra. Vol. II. Springer-Verlag, New York, (1975). Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29. | MR | Zbl
Cited by Sources: