We study some properties of the polar curve associated to a singular holomorphic foliation on the complex projective plane . We prove that, for a generic center , the curve is irreducible and its singular points are exactly the singular points of with vanishing linear part. We also obtain upper bounds for the algebraic multiplicities of the singularities of and for its number of radial singularities.
On étudie dans cet article quelques propriétés de la courbe polaire associée à un feuilletage holomorphe singulier dans le plan projectif complexe . On démontre que, pour un centre générique, la courbe est irréductible et ses points singuliers sont précisément les points singuliers de avec partie linéaire nulle. On obtient aussi des bornes supérieurs pour la multiplicité algébrique des singularités de et pour son nombre de singularités radiales.
@article{AFST_2010_6_19_3-4_849_0, author = {Rog\'erio S. Mol}, title = {The polar curve of a foliation on $\mathbb{P}^2$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {849--863}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1268}, mrnumber = {2790820}, zbl = {1254.53050}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1268/} }
TY - JOUR AU - Rogério S. Mol TI - The polar curve of a foliation on $\mathbb{P}^2$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 849 EP - 863 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1268/ DO - 10.5802/afst.1268 LA - en ID - AFST_2010_6_19_3-4_849_0 ER -
%0 Journal Article %A Rogério S. Mol %T The polar curve of a foliation on $\mathbb{P}^2$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 849-863 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1268/ %R 10.5802/afst.1268 %G en %F AFST_2010_6_19_3-4_849_0
Rogério S. Mol. The polar curve of a foliation on $\mathbb{P}^2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 3-4, pp. 849-863. doi : 10.5802/afst.1268. https://afst.centre-mersenne.org/articles/10.5802/afst.1268/
[1] Bodin (A.), Débes (P.), and Najib (S.).— Irreducibility of hypersurfaces. Comm. Algebra, 37(6):1884-1900, (2009). | MR | Zbl
[2] Brieskorn (E.) and Knörrer (H.).— Plane algebraic curves. Birkhäuser Verlag, Basel, (1986). | MR | Zbl
[3] Camacho (C.), Lins Neto (A.), and Sad (P.).— Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geom., 20(1):143-174, (1984). | MR | Zbl
[4] Campillo (A.) and Olivares (J.).— Polarity with respect to a foliation and Cayley- Bacharach theorems. J. Reine Angew. Math., 534:95-118, (2001). | MR | Zbl
[5] Corral (N.).— Sur la topologie des courbes polaires de certains feuilletages singuliers. Ann. Inst. Fourier (Grenoble), 53(3):787-814, (2003). | Numdam | MR | Zbl
[6] Corral (N.).— Infinitesimal adjunction and polar curves. Bull. Braz. Math. Soc. (N.S.), 40(2):181-224, (2009). | MR | Zbl
[7] Corral (N.).— Polar pencil of curves and foliations. Astérisque, (323):161-179, (2009). | MR
[8] Gómez-Mont (X.), Seade (J.), and Verjovsky (A.).— The index of a holomorphic ow with an isolated singularity. Math. Ann., 291(4):737-751, (1991). | MR | Zbl
[9] Griffiths (P.) and Harris (J.).— Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York, (1994). | MR | Zbl
[10] Mol (R.S.).— Classes polaires associées aux distributions holomorphes de sous-espaces tangents. Bull. Braz. Math. Soc. (N.S.), 37(1):29-48, (2006). | MR | Zbl
[11] Schinzel (A.).— Polynomials with special regard to reducibility, volume 77 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, (2000). | MR | Zbl
[12] Wall (C.T.C.).— Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, (2004). | MR | Zbl
Cited by Sources: