The polar curve of a foliation on 2
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 3-4, pp. 849-863.

We study some properties of the polar curve P l associated to a singular holomorphic foliation on the complex projective plane 2 . We prove that, for a generic center l 2 , the curve P l is irreducible and its singular points are exactly the singular points of with vanishing linear part. We also obtain upper bounds for the algebraic multiplicities of the singularities of and for its number of radial singularities.

On étudie dans cet article quelques propriétés de la courbe polaire P l associée à un feuilletage holomorphe singulier dans le plan projectif complexe 2 . On démontre que, pour un centre l 2 générique, la courbe P l est irréductible et ses points singuliers sont précisément les points singuliers de avec partie linéaire nulle. On obtient aussi des bornes supérieurs pour la multiplicité algébrique des singularités de et pour son nombre de singularités radiales.

DOI: 10.5802/afst.1268

Rogério S. Mol 1

1 Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 C.P. 702, 30123-970 - Belo Horizonte - MG, BRAZIL
@article{AFST_2010_6_19_3-4_849_0,
     author = {Rog\'erio S. Mol},
     title = {The polar curve of a foliation on $\mathbb{P}^2$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {849--863},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 19},
     number = {3-4},
     year = {2010},
     doi = {10.5802/afst.1268},
     mrnumber = {2790820},
     zbl = {1254.53050},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1268/}
}
TY  - JOUR
AU  - Rogério S. Mol
TI  - The polar curve of a foliation on $\mathbb{P}^2$
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2010
SP  - 849
EP  - 863
VL  - 19
IS  - 3-4
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1268/
DO  - 10.5802/afst.1268
LA  - en
ID  - AFST_2010_6_19_3-4_849_0
ER  - 
%0 Journal Article
%A Rogério S. Mol
%T The polar curve of a foliation on $\mathbb{P}^2$
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2010
%P 849-863
%V 19
%N 3-4
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1268/
%R 10.5802/afst.1268
%G en
%F AFST_2010_6_19_3-4_849_0
Rogério S. Mol. The polar curve of a foliation on $\mathbb{P}^2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 3-4, pp. 849-863. doi : 10.5802/afst.1268. https://afst.centre-mersenne.org/articles/10.5802/afst.1268/

[1] Bodin (A.), Débes (P.), and Najib (S.).— Irreducibility of hypersurfaces. Comm. Algebra, 37(6):1884-1900, (2009). | MR | Zbl

[2] Brieskorn (E.) and Knörrer (H.).— Plane algebraic curves. Birkhäuser Verlag, Basel, (1986). | MR | Zbl

[3] Camacho (C.), Lins Neto (A.), and Sad (P.).— Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geom., 20(1):143-174, (1984). | MR | Zbl

[4] Campillo (A.) and Olivares (J.).— Polarity with respect to a foliation and Cayley- Bacharach theorems. J. Reine Angew. Math., 534:95-118, (2001). | MR | Zbl

[5] Corral (N.).— Sur la topologie des courbes polaires de certains feuilletages singuliers. Ann. Inst. Fourier (Grenoble), 53(3):787-814, (2003). | Numdam | MR | Zbl

[6] Corral (N.).— Infinitesimal adjunction and polar curves. Bull. Braz. Math. Soc. (N.S.), 40(2):181-224, (2009). | MR | Zbl

[7] Corral (N.).— Polar pencil of curves and foliations. Astérisque, (323):161-179, (2009). | MR

[8] Gómez-Mont (X.), Seade (J.), and Verjovsky (A.).— The index of a holomorphic ow with an isolated singularity. Math. Ann., 291(4):737-751, (1991). | MR | Zbl

[9] Griffiths (P.) and Harris (J.).— Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York, (1994). | MR | Zbl

[10] Mol (R.S.).— Classes polaires associées aux distributions holomorphes de sous-espaces tangents. Bull. Braz. Math. Soc. (N.S.), 37(1):29-48, (2006). | MR | Zbl

[11] Schinzel (A.).— Polynomials with special regard to reducibility, volume 77 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, (2000). | MR | Zbl

[12] Wall (C.T.C.).— Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, (2004). | MR | Zbl

Cited by Sources: