The different notions of matings of pairs of equal degree polynomials are introduced and are related to each other as well as known results on matings. The possible obstructions to matings are identified and related. Moreover the relations between the polynomials and their matings are discussed and proved. Finally holomorphic motion properties of slow-mating are proved.
Les différentes notions d’accouplement d’une paire de polynômes de même degré sont introduites et sont reliées les unes aux autres ainsi que les résultats connus concernant les accouplements. Les obstructions possibles à l’accouplement sont reliées entr’elles et identifiées. De plus, les relations entre les polynômes et leur accouplement sont discutées et prouvées. Enfin on démontre des propriétés de mouvement holomorphe de l’accouplement lent.
Carsten Lunde Petersen 1; Daniel Meyer 2
@article{AFST_2012_6_21_S5_839_0, author = {Carsten Lunde Petersen and Daniel Meyer}, title = {On {The} {Notions} of {Mating}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {839--876}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {S5}, year = {2012}, doi = {10.5802/afst.1355}, mrnumber = {3088260}, zbl = {06167094}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1355/} }
TY - JOUR AU - Carsten Lunde Petersen AU - Daniel Meyer TI - On The Notions of Mating JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 839 EP - 876 VL - 21 IS - S5 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1355/ DO - 10.5802/afst.1355 LA - en ID - AFST_2012_6_21_S5_839_0 ER -
%0 Journal Article %A Carsten Lunde Petersen %A Daniel Meyer %T On The Notions of Mating %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 839-876 %V 21 %N S5 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1355/ %R 10.5802/afst.1355 %G en %F AFST_2012_6_21_S5_839_0
Carsten Lunde Petersen; Daniel Meyer. On The Notions of Mating. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, pp. 839-876. doi : 10.5802/afst.1355. https://afst.centre-mersenne.org/articles/10.5802/afst.1355/
[1] Block (A.), Childers (D.), Levin (G.), Oversteegen (L.) and Schleicher (D.).— An Extended Fatou-Shishikura Inequality and Wandering Branch Continua for Polynomials. arXiv:10010953v2.
[2] Branner (B.) and Hubbard (J. H.).— The iteration of cubic polynomials : Part I. The global topology of parameter space. Acta Math. 160, p. 143-206 (1988). | MR | Zbl
[3] Carleson (L.) and Gamelin (T.).— Introduction to complex Dynamics. Springer (1993). | MR | Zbl
[4] Daverman (R. J.).— Decompositions of manifolds, volume 124 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL (1986). | MR | Zbl
[5] Douady (A.).— Descriptions of compact sets in . in Topological Methods in Modern Mathematics, edited by L.R.Goldberg and A.V.Phillips, Publish or Perish, INC (1993). | MR | Zbl
[6] Kiwi (J.).— Real laminations and the topological dynamics of complex polynomials. Advances in Math. 184, no. 2, p. 207-267 (2004). | MR | Zbl
[7] Meyer (D.).— Invariant Peano curves of expanding Thurston maps. to appear in Acta Math.
[8] Meyer (D.).— Expanding Thurston maps as quotients. Preprint.
[9] Meyer (D.).— Unmating of rational maps, sufficient criteria and examples. Preprint.
[10] Milnor (J.).— Dynamics in one complex variable, Princeton Univ. Press, Princeton, NJ, (2006). | MR | Zbl
[11] Milnor (J.).— Geometry and Dynamics of Quadratic Rational Maps. Exp. Math. 2, p. 37-83 (1993). | MR | Zbl
[12] Milnor (J.).— Pasting together Julia sets: A worked out example of mating. Exp. Math. 13(1), p. 55-92 (2004). | EuDML | MR | Zbl
[13] Moore (R. L.).— Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. Vol 27 No. 4, p. 416-428 (1925). | JFM | MR
[14] Petersen (C. L.) and Tan (L.).— Branner-Hubbard motions and attracting dynamics. in Dynamics on the Riemann Sphere, edited by P. G. Hjorth and C. L. Petersen, EMS Publishing House, p. 45-70 (2006). | MR | Zbl
[15] Rees (M.).— A partial description of parameter space of rational maps of degree two. I. Acta Math., 168(1-2), p. 11-87 (1992). | MR | Zbl
[16] Tan (L.).— Matings of quadratic polynomials. Ergodic Theory Dynam. Systems, 12(3), p. 589-620, (1992). | MR | Zbl
[17] Timorin (V.).— Moore’s theorem, preprint.
[18] Shishikuran (M.).— On a Theorem of M. Rees for matings of polynomials in The Mandelbrot Set, Theme and Variations, edited by Tan lei, Cambridge University Press, p. 289-305 (2000). | MR | Zbl
[19] Yampolsky (M.) and Zakeri (S.).— Mating Siegel quadratic polynomials, J. Amer. Math. Soc., 14(1), p. 25-78 (2001). | MR | Zbl
Cited by Sources: