We provide new examples of diffusion operators in dimension 2 and 3 which have orthogonal polynomials as eigenvectors. Their construction relies on the finite subgroups of and their invariant polynomials.
DOI: 10.5802/afst.1508
Dominique Bakry 1; Xavier Bressaud 1
@article{AFST_2016_6_25_2-3_683_0, author = {Dominique Bakry and Xavier Bressaud}, title = {Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {683--721}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {2-3}, year = {2016}, doi = {10.5802/afst.1508}, zbl = {1369.35038}, mrnumber = {3530172}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1508/} }
TY - JOUR AU - Dominique Bakry AU - Xavier Bressaud TI - Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 SP - 683 EP - 721 VL - 25 IS - 2-3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1508/ DO - 10.5802/afst.1508 LA - en ID - AFST_2016_6_25_2-3_683_0 ER -
%0 Journal Article %A Dominique Bakry %A Xavier Bressaud %T Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2016 %P 683-721 %V 25 %N 2-3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1508/ %R 10.5802/afst.1508 %G en %F AFST_2016_6_25_2-3_683_0
Dominique Bakry; Xavier Bressaud. Diffusions with polynomial eigenvectors via finite subgroups of $O(3)$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 2-3, pp. 683-721. doi : 10.5802/afst.1508. https://afst.centre-mersenne.org/articles/10.5802/afst.1508/
[1] Bakry (D.), Gentil (I.), and Ledoux (M.).— Analysis and Geometry of Markov Diffusion Operators, Grund. Math. Wiss., vol. 348, Springer, Berlin (2013). | DOI
[2] Bakry (D.) and Mazet (O.).— Characterization of Markov semigroups on R associated to some families of orthogonal polynomials, Séminaire de Probabilités XXXVII, Lecture Notes in Math., vol. 1832, Springer, Berlin, p. 60-80 (2003). MR MR2053041 | DOI
[3] Bakry (D.), Orevkov (S.), and Zani (M.).— Orthogonal polynomials and diffusions operators.
[4] Meyer (B.).— On the symmetries of spherical harmonics, Canadian J. Math. 6, p. 135-157 (1954). | DOI | MR | Zbl
[5] Smith (L.).— Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA (1995). | DOI
[6] Smith (L.).— Polynomial invariants of finite groups. A survey of recent developments, Bull. Amer. Math. Soc. (N.S.) 34, no. 3, p. 211-250 (1997). | DOI | MR | Zbl
[7] Stanley (R. P.).— Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1, no. 3, p. 475-511 (1979). | DOI | MR | Zbl
Cited by Sources: