We investigate wave breaking criteria for the Dullin-Gottwald-Holm equation and the two-component Dullin-Gottwald-Holm system. We establish a new blow-up criterion for the general case involving local-in-space conditions on the initial data.
Nous étudions les critères d’explosion pour l’équation de Dullin-Gottwald-Holm et pour le système de Dullin-Gottwald-Holm à deux composantes. Nous établissons un nouveau critère d’explosion pour le cas général , impliquant des conditions locales en espace sur les données initiales.
@article{AFST_2016_6_25_5_995_0, author = {Duc-Trung Hoang}, title = {The local criteria for blowup of the {Dullin-Gottwald-Holm} equation and the two-component {Dullin-Gottwald-Holm} system}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {995--1012}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {5}, year = {2016}, doi = {10.5802/afst.1519}, zbl = {1373.35059}, mrnumber = {3582117}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1519/} }
TY - JOUR AU - Duc-Trung Hoang TI - The local criteria for blowup of the Dullin-Gottwald-Holm equation and the two-component Dullin-Gottwald-Holm system JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 SP - 995 EP - 1012 VL - 25 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1519/ DO - 10.5802/afst.1519 LA - en ID - AFST_2016_6_25_5_995_0 ER -
%0 Journal Article %A Duc-Trung Hoang %T The local criteria for blowup of the Dullin-Gottwald-Holm equation and the two-component Dullin-Gottwald-Holm system %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2016 %P 995-1012 %V 25 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1519/ %R 10.5802/afst.1519 %G en %F AFST_2016_6_25_5_995_0
Duc-Trung Hoang. The local criteria for blowup of the Dullin-Gottwald-Holm equation and the two-component Dullin-Gottwald-Holm system. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 5, pp. 995-1012. doi : 10.5802/afst.1519. https://afst.centre-mersenne.org/articles/10.5802/afst.1519/
[1] Brandolese (L.).— Local-in-space criteria for blowup in shallow water and dispersive rod equations, Comm. Math. Phys, 330, p. 401-414 (2014). | DOI | MR | Zbl
[2] Brandolese (L.), Fernando Cortez (M.).— Blowup issues for a class of nonlinear dispersive wave equations J. Diff. Equ. 256 p. 3981-3998 (2014). | DOI | MR | Zbl
[3] Brandolese (L.), Fernando Cortez (M.).— On permanent and breaking waves in hyperelastic rods and rings, J. Funct. Anal. 266, 12 p. 6954-6987 (2014). | DOI | MR | Zbl
[4] Constantin (A.) and Escher (J.).— Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51, p. 475-504 (1998). | DOI | MR | Zbl
[5] Constantin (A.) and Molinet (L.).— Global weak solutions for a shallow water equation, Comm. Math. Phys., 211, p. 45-61 (2000). | DOI | MR | Zbl
[6] Constantin (A.) and Ivanov (R. I.).— On an integrable two-component Camassa-Holm shallow water system, Physics Letters A, vol. 372, no. 48, p. 7129-7132 (2008). | DOI | MR | Zbl
[7] Camassa (R.) and Holm (D. D.).— An integrable shallow water equation with peaked solitons, Physical Review Letters, vol. 71, no. 11, p. 1661-1664 (1993). | DOI | MR | Zbl
[8] Dullin (H.), Gottwald (G.), Holm (D.).— An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett. 87 p. 1945-1948 (2001). | DOI
[9] Escher (J.), Lechtenfeld (O.), and Yin (Z.).— Well-posedness and blowup phenomena for the 2-component Camassa-Holm equation, Discrete and Continuous Dynamical Systems A, vol. 19, no. 3, p. 493-513 (2007). | DOI | MR | Zbl
[10] Guo (Z.) and Zhou (Y.).— Wave breaking and persistence properties for the dispersive rod equation, SIAM Journal on Mathematical Analysis, vol. 40, no. 6, p. 2567-2580 (2009). | DOI | MR | Zbl
[11] Guo (F.), Gao (H.), and Liu (Y.).— On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system, J. of the London Math. Soc., vol. 86, no. 3, p. 810-834 (2012). | DOI | MR | Zbl
[12] Himonas (A. A.) and Misiolek (G.).— The Cauchy problem for an integrable shallow-water equation, Differential and Integral Equations, vol. 14, no. 7, p. 821-831 (2001). | MR | Zbl
[13] Kato (T.).— Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, vol. 4487 of Lecture Notes in Mathematics, p. 25-70, Springer, Berlin, Germany, (1975). | DOI
[14] Li (Y.) and Olver (P.).— Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Diff. Eq., 162, p. 27-63 (2000). | DOI | MR | Zbl
[15] Liu (Y.).— Global existence and blow-up solutions for a nonlinear shallow water equation., Math. Annalen, vol. 335, no. 3, p. 717-735 (2006). | DOI | MR | Zbl
[16] Lv (W.), Zhu (W.).— Wave breaking for the modified two-component Camassa-Holm system, Abstract and Applied Analysis, vol. 2014, Article ID 520218 (2014). 4pp. | DOI | Zbl
[17] Mckean (H.P.).— Breakdown of a shallow water equation, Asian J. Math. 2(4) p. 867-874 (1998). | DOI | MR | Zbl
[18] Misiolek (G.).— Classical solutions of the periodic Camassa-Holm equation, Geom. Funct. Anal., 12, p. 1080-1104 (2002). | DOI | MR | Zbl
[19] Shkoller (S.).— Geometry and curvature of diffeomorphism groups with metric and mean hydrodynamics, J. Funct. Anal., 160, p. 337-365 (1998). | DOI | MR | Zbl
[20] Tian (L.X.), Gui (G.), Liu (Y.).— On the Cauchy problem and the scattering problem for the Dullin-Gottwald-Holm equation, Comm. Math. Phys., vol. 257, no. 3, p. 667-701 (2005). | DOI | MR | Zbl
[21] Xin (Z.) and Zhang (P.).— On the weak solution to a shallow water equation, Comm. Pure Appl. Math., 53, p. 1411-1433 (2000). | DOI | MR | Zbl
[22] Zhai (P.), Guo (Z.), and Wang (W.).— Blow-up phenomena and persistence properties of solutions to the two-component DGH equation, Abstract and Applied Analysis, vol. 2013, Article ID 750315 (2013). 26pp. | DOI | Zbl
[23] Zhou (Y.).— Blow-up of solutions to the DGH equation, Journal of Functional Analysis, vol. 250, no. 1, p. 227, 248 (2007). | DOI | MR | Zbl
[24] Zhu (M.), Xu (J.).— Wave-breaking phenomena and global solutions for periodic two-component Dullin-Gottwald-Holm Systems, Electronic Journal of Differential Equations, Vol. 2013, No. 44, p. 1-27 (2013). | Zbl
[25] Zhu (M.) and Xu (J.).— On the wave-breaking phenomena for the periodic two-component Dullin-Gottwald-Holm system, Journal of Mathematical Analysis and Applications, vol. 391, no. 2, p. 415-428 (2012). | DOI | MR | Zbl
[26] Zhu (M.), Jin (L.), and Jiang (Z.).— A New blow-up criterion for the DGH equation, Abstract and Applied Analysis, vol. 2012, Article ID 515948 (2012). 10pp. | DOI | Zbl
Cited by Sources: