We prove a version of Aubin’s “Hypothèse fondamentale” concerning the existence of Moser–Trudinger type inequalities on any integral compact Kähler manifold . In the case of the anti-canonical class on a Fano manifold the constants in the inequalities are shown to only depend on the dimension of (but there are counterexamples to the precise value proposed by Aubin). In the different setting of pseudoconvex domains in complex space we also obtain a quasi-sharp version of the inequalities and relate it to Brezis–Merle type inequalities for the complex Monge–Ampère operator, recently considered by Demailly and Åhag–Cegrell–Kołodziej–Phạm–Zeriahi. The inequalities are shown to be sharp for -invariant functions on the unit ball.
Robert J. Berman 1; Bo Berndtsson 1
@article{AFST_2022_6_31_3_595_0, author = {Robert J. Berman and Bo Berndtsson}, title = {Moser{\textendash}Trudinger type inequalities for complex {Monge{\textendash}Amp\`ere} operators and {Aubin{\textquoteright}s} {\textquotedblleft}hypoth\`ese fondamentale{\textquotedblright}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {595--645}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {3}, year = {2022}, doi = {10.5802/afst.1704}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1704/} }
TY - JOUR AU - Robert J. Berman AU - Bo Berndtsson TI - Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale” JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 595 EP - 645 VL - 31 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1704/ DO - 10.5802/afst.1704 LA - en ID - AFST_2022_6_31_3_595_0 ER -
%0 Journal Article %A Robert J. Berman %A Bo Berndtsson %T Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale” %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 595-645 %V 31 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1704/ %R 10.5802/afst.1704 %G en %F AFST_2022_6_31_3_595_0
Robert J. Berman; Bo Berndtsson. Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale”. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 595-645. doi : 10.5802/afst.1704. https://afst.centre-mersenne.org/articles/10.5802/afst.1704/
[1] On Dirichlet’s principle and problem, Math. Scand., Volume 110 (2012) no. 2, pp. 235-250 | DOI | MR | Zbl
[2] Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Adv. Math., Volume 222 (2009) no. 6, pp. 2036-2058 | DOI | MR | Zbl
[3] Réduction du cas positif de l´equation de Monge–Ampère sur les variétés kahleriennes compactes à la démonstration d’une inégalité, J. Funct. Anal., Volume 57 (1984), pp. 143-153 | DOI | MR | Zbl
[4] Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer, 1998 | DOI | Zbl
[5] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math., Volume 138 (1993) no. 1, pp. 213-242 | DOI | MR | Zbl
[6] Plurisubharmonic functions with weak singularities, Complex analysis and digital geometry (Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist.), Volume 86, Univ. Uppsala, 2009, pp. 57-74 | MR | Zbl
[7] Analytic torsion, vortices and positive Ricci curvature (2010) (https://arxiv.org/abs/1006.2988)
[8] A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kahler–Einstein metrics, Adv. Math., Volume 248 (2013), pp. 1254-1297 | DOI | Zbl
[9] Symmetrization of Plurisubharmonic and Convex Functions, Indiana Univ. Math. J., Volume 63 (2014) no. 2, pp. 345-365 | DOI | MR | Zbl
[10] The volume of Kähler–Einstein Fano varieties and convex bodies, J. Reine Angew. Math., Volume 723 (2017), pp. 127-152 | Zbl
[11] A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013) no. 1, pp. 179-245 | DOI | Numdam | Zbl
[12] Kähler–Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 27-89 | DOI | Zbl
[13] Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology (Progress in Mathematics), Volume 296, Birkhäuser, 2012, pp. 39-66 | DOI | MR | Zbl
[14] An arithmetic Hilbert-Samuel theorem for singular hermitian line bundles and cusp forms, Compos. Math., Volume 150 (2014) no. 10, pp. 1703-1728 | DOI | MR | Zbl
[15] Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl
[16] Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differ. Geom., Volume 81 (2009) no. 3, pp. 457-482 | Zbl
[17] A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., Volume 200 (2015) no. 1, pp. 149-200 | DOI | Zbl
[18] A comparison principle for Bergman kernels, Analysis meets geometry (Trends in Mathematics), Birkhäuser, 2017, pp. 121-126 | DOI | Zbl
[19] Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI | MR | Zbl
[20] On the -stability for the complex Monge–Ampère operator, Mich. Math. J., Volume 42 (1995) no. 2, pp. 269-275 | Zbl
[21] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[22] Uniform estimates and blow-up behavior for solutions of in two dimensions, Commun. Partial Differ. Equations, Volume 16 (1992) no. 8-9, pp. 1223-1253 | DOI | MR | Zbl
[23] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., Volume 143 (1992) no. 3, pp. 501-525 | DOI | MR | Zbl
[24] Connexite rationnelle des varietes de Fano, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992) no. 5, pp. 539-545 | DOI | Numdam | MR | Zbl
[25] Pluricomplex energy, Acta Math., Volume 180 (1998) no. 2, pp. 187-217 | DOI | MR | Zbl
[26] Approximation of plurisubharmonic functions in hyperconvex domains, Complex analysis and digital geometry (Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist.), Volume 86, Univ. Uppsala, 2009, pp. 125-129 | MR | Zbl
[27] The Dirichlet problem for the complex Monge–Ampère operator: stability in , Mich. Math. J., Volume 39 (1992) no. 1, pp. 145-151 | Zbl
[28] Subextension of plurisubharmonic functions with bounded Monge–Ampère mass, C. R. Acad. Sci. Paris, Volume 336 (2003) no. 4, pp. 305-308 | DOI | Zbl
[29] Log canonical thresholds of Fano threefold hypersurfaces (Russian), Izv. Math., Volume 73 (2009) no. 4, pp. 77-152
[30] On the singularity type of full mass currents in big cohomology classes, Compos. Math., Volume 154 (2018) no. 2, pp. 380-409 | DOI | MR | Zbl
[31] Radially symmetric boundary value problems for real and complex elliptic Monge–Ampère equations, J. Differ. Equations, Volume 58 (1985), pp. 318-344 | DOI | Zbl
[32] Estimates on Monge–Ampère operators derived from a local algebra inequality, Complex analysis and digital geometry (Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist.), Volume 86, Univ. Uppsala, 2009, pp. 131-143 | Zbl
[33] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001) no. 4, pp. 525-556 | DOI | Numdam | Zbl
[34] A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014) no. 1, pp. 1-9 | DOI | MR | Zbl
[35] Finite entropy vs finite energy, Comment. Math. Helv., Volume 96 (2021) no. 2, pp. 389-419 | DOI | MR | Zbl
[36] Remarks on the existence problem of positive Kähler–Einstein metrics, Math. Ann., Volume 282 (1988) no. 3, pp. 463-472 | DOI | Zbl
[37] The generalized Moser–Trudinger Inequality, Nonlinear analysis and microlocal analysis (Nankai Series in Pure, Applied Mathematics and Theoretical Physics), Volume 2, World Scientific, 1993, pp. 57-70 | Zbl
[38] Multiplicities and log canonical threshold, J. Algebr. Geom., Volume 13 (2004) no. 3, pp. 603-615 | DOI | MR | Zbl
[39] Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv., Volume 68 (1993) no. 3, pp. 415-454 | DOI | MR | Zbl
[40] Optimal bounds for the volumes of Kähler–Einstein Fano manifolds, Am. J. Math., Volume 140 (2018) no. 2, pp. 391-414 | DOI | Zbl
[41] Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979), pp. 209-243 | DOI | MR | Zbl
[42] Kähler–Einstein fillings, J. Lond. Math. Soc., Volume 88 (2013) no. 3, pp. 737-760 | DOI | Zbl
[43] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. (2005) no. 4, pp. 607-639 | DOI | Zbl
[44] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | Zbl
[45] On the degrees of Fano four-folds of Picard number 1, J. Reine Angew. Math., Volume 556 (2003), pp. 225-235 | MR | Zbl
[46] Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes, Ann. Inst. Fourier, Volume 33 (1983) no. 2, pp. 151-165 | DOI | Numdam | Zbl
[47] Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., Volume 46 (1993) no. 1, pp. 27-56 | DOI | MR | Zbl
[48] Rational connectedness and boundedness of Fano manifolds, J. Differ. Geom., Volume 36 (1992) no. 3, pp. 765-779 | MR | Zbl
[49] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | Zbl
[50] A Pohožaev identity and critical exponents of some complex Hessian equations, J. Partial Differ. Equations, Volume 29 (2016) no. 3, pp. 175-194 | DOI | MR | Zbl
[51] On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Éc. Norm. Supér., Volume 13 (1980), pp. 451-468 | Numdam | MR | Zbl
[52] Convergence for a Liouville equation, Comment. Math. Helv., Volume 76 (2001) no. 3, pp. 506-514 | MR | Zbl
[53] A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077-1092 | DOI | MR | Zbl
[54] The Moser–Trudinger inequality on Kähler–Einstein manifolds, Am. J. Math., Volume 130 (2008) no. 4, pp. 1067-1085 | DOI | Zbl
[55] Extremal cases for the log canonical threshold, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 1, pp. 21-24 | DOI | MR | Zbl
[56] The partial -estimate along the continuity method, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 537-560 | DOI | MR | Zbl
[57] Regularity of weak solutions of a complex Monge–Ampère equation, Anal. PDE, Volume 4 (2011) no. 3, pp. 369-378 | DOI | Zbl
[58] On Kähler–Einstein metrics on certain Kähler manifolds with ., Invent. Math., Volume 89 (1987), pp. 225-246 | DOI | Zbl
[59] On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., Volume 101 (1990) no. 1, pp. 101-172 | DOI | MR | Zbl
[60] Canonical Metrics in Kähler Geometry, Lectures in Mathematics, Birkhäuser, 2000 | DOI
[61] Kahler-Einstein metrics on complex surfaces with , Commun. Math. Phys., Volume 112 (1987) no. 1, pp. 175-203 | DOI | Zbl
[62] On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473-483 | MR | Zbl
[63] Book review of: Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Bull. Am. Math. Soc., Volume 46 (2009) no. 2, pp. 349-361 | DOI | Zbl
Cited by Sources: