Four-manifolds with shadow-complexity one
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 4, pp. 1111-1212.

We study the set of all closed oriented smooth 4-manifolds experimentally, according to a suitable complexity defined using Turaev’s shadows. This complexity roughly measures how complicated the 2-skeleton of the 4-manifold is.

We characterise here all the closed oriented 4-manifolds that have complexity at most one. They are generated by a certain set of 20 blocks, that are some basic 4-manifolds with boundary consisting of copies of S 2 ×S 1 , plus connected sums with some copies of ℂℙ 2 with either orientation.

All the manifolds generated by these blocks are doubles. Many of these are doubles of 2-handlebodies and are hence efficiently encoded using finite presentations of groups. In contrast to the complexity zero case, in complexity one there are also plenty of doubles that are not doubles of 2-handlebodies, like for instance ℝℙ 3 ×S 1 .

Nous étudions expérimentalement l’ensemble de toutes les 4-variétés lisses orientées fermées, selon une complexité définie à l’aide des ombres de Turaev. Cette complexité mesure à peu près à quel point le 2-squelette de la 4-variété est compliqué.

Nous caractérisons ici toutes les 4-variétés orientées fermées qui ont complexité mineure ou égale à 1. Ces variétés sont engendrées par un certain ensemble de 20 blocs, qui sont des 4-variétés relativement simples avec un bord constitué de copies de S 2 ×S 1 , plus des sommes connexes avec des copies de ℂℙ 2 avec orientation arbitraire.

Toutes les variétés générées par ces blocs sont des doubles. Beaucoup d’entre elles sont des doubles de corps à 2-anses et sont donc efficacement codifiées en utilisant des présentations finies de groupes. Contrairement au cas de complexité zéro, en complexité 1 il y a aussi beaucoup de doubles qui ne sont pas doubles de corps à 2-anses, comme par exemple ℝℙ 3 ×S 1 .

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1715

Yuya Koda 1; Bruno Martelli 2; Hironobu Naoe 3

1 Department of Mathematics Hiroshima University, 1-3-1 Kagamiyama, Higashi - Hiroshima, 739-8526, Japan
2 Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy
3 Department of Mathematics Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_4_1111_0,
     author = {Yuya Koda and Bruno Martelli and Hironobu Naoe},
     title = {Four-manifolds with shadow-complexity one},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1111--1212},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {4},
     year = {2022},
     doi = {10.5802/afst.1715},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1715/}
}
TY  - JOUR
AU  - Yuya Koda
AU  - Bruno Martelli
AU  - Hironobu Naoe
TI  - Four-manifolds with shadow-complexity one
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1111
EP  - 1212
VL  - 31
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1715/
DO  - 10.5802/afst.1715
LA  - en
ID  - AFST_2022_6_31_4_1111_0
ER  - 
%0 Journal Article
%A Yuya Koda
%A Bruno Martelli
%A Hironobu Naoe
%T Four-manifolds with shadow-complexity one
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1111-1212
%V 31
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1715/
%R 10.5802/afst.1715
%G en
%F AFST_2022_6_31_4_1111_0
Yuya Koda; Bruno Martelli; Hironobu Naoe. Four-manifolds with shadow-complexity one. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 4, pp. 1111-1212. doi : 10.5802/afst.1715. https://afst.centre-mersenne.org/articles/10.5802/afst.1715/

[1] Ian Agol Bounds on exceptional Dehn filling, Geom. Topol., Volume 4 (2000), pp. 431-439 | DOI | MR | Zbl

[2] Benjamin A. Burton; Ryan Budney; William Pettersson et al. Regina, software for low-dimensional topology (https://regina-normal.github.io/)

[3] Benjamin A. Burton; Jonathan Spreer Computationally proving triangulated 4-manifolds to be diffeomorphic, 29th ACM Symposium on Computational Geometry, Young Researchers Forum, Collections of abstracts, ACM Press, 2013, pp. 15-16

[4] Patrick J. Callahan; Martin V. Hildebrand; Jeffrey R. Weeks A census of cusped hyperbolic 3-manifolds, Math. Comput., Volume 68 (1999) no. 225, pp. 321-332 | DOI | MR | Zbl

[5] Maria Rita Casali; Paola Cristofori Cataloguing PL 4-manifolds by gem-complexity, Electron. J. Comb., Volume 22 (2015) no. 4, 4.25, 25 pages | MR | Zbl

[6] Donald J. Collins; Heiner Zieschang Combinatorial group theory and fundamental groups., Algebra VII. Combinatorial group theory. Applications to geometry (Encyclopaedia of Mathematical Sciences), Volume 58, Springer, 1993, pp. 1-166 | MR

[7] Francesco Costantino Complexity of 4-manifolds, Exp. Math., Volume 15 (2006) no. 2, pp. 237-249 | DOI | MR | Zbl

[8] Francesco Costantino; Roberto Frigerio; Bruno Martelli; Carlo Petronio Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling, Comment. Math. Helv., Volume 82 (2007) no. 4, pp. 903-934 | DOI | MR | Zbl

[9] Francesco Costantino; Dylan Thurston 3-manifolds efficiently bound 4-manifolds, J. Topol., Volume 1 (2008) no. 3, pp. 703-745 | DOI | MR | Zbl

[10] Harold S. M. Coxeter The abstract groups G m,n,p , Trans. Am. Math. Soc., Volume 45 (1939), pp. 73-150 | DOI | Zbl

[11] Marc Culler; Nathan Dunfield; Jeff Weeks SnapPy, a computer program for studying the geometry and topology of 3-manifolds (http://www.math.uic.edu/t3m/SnapPy/)

[12] Simon K. Donaldson Some problems in differential geometry and topology, Nonlinearity, Volume 21 (2008) no. 9, pp. 157-164 | DOI | MR | Zbl

[13] Michael H. Freedman Group width, Math. Res. Lett., Volume 18 (2011) no. 3, pp. 433-436 | DOI | MR | Zbl

[14] David Gabai Foliations and the topology of 3-manifolds. III, J. Differ. Geom., Volume 26 (1987) no. 3, pp. 479-536 | MR | Zbl

[15] Herman Gluck The embedding of two-spheres in the four-sphere, Trans. Am. Math. Soc., Volume 104 (1962), pp. 308-333 | DOI | MR | Zbl

[16] Cameron McA. Gordon; John Luecke Knots are determined by their complements, J. Am. Math. Soc., Volume 2 (1989) no. 2, pp. 371-415 | DOI | MR | Zbl

[17] Ian Hambleton; Matthias Kreck; Peter Teichner Topological 4-manifolds with geometrically 2-dimensional fundamental groups, J. Topol. Anal., Volume 1 (2009) no. 2, p. 123-51 | DOI | MR | Zbl

[18] Two-Dimensional Homotopy And Combinatorial Group Theory (Cynthia Hog-Angeloni; Wolfgang Metzler; Allan J. Sieradski, eds.), London Mathematical Society Lecture Note Series, 197, Cambridge University Press, 1993 | DOI | Zbl

[19] Jim Hoste; Morwen Thistlethwaite; Jeff Weeks The first 1,701,936 knots, Math. Intell., Volume 20 (1998) no. 4, pp. 33-48 | DOI | MR | Zbl

[20] Masaharu Ishikawa; Yuya Koda Stable maps and branched shadows of 3-manifolds, Math. Ann., Volume 367 (2017) no. 3-4, pp. 1819-1863 | DOI | MR | Zbl

[21] Marc Lackenby Word hyperbolic Dehn surgery, Invent. Math., Volume 140 (2000) no. 2, pp. 243-282 | DOI | MR | Zbl

[22] François Laudenbach; Valentin Poenaru A note on 4-dimensional handlebodies, Bull. Soc. Math. Fr., Volume 100 (1972), pp. 337-344 | DOI | Numdam | MR | Zbl

[23] Bruno Martelli Four-manifolds with shadow-complexity zero, Int. Math. Res. Not., Volume 2011 (2011) no. 6, pp. 1268-1351 | MR | Zbl

[24] Bruno Martelli; Carlo Petronio Dehn filling of the “magic” 3-manifold, Commun. Anal. Geom., Volume 14 (2006) no. 5, pp. 969-1026 | DOI | MR | Zbl

[25] Bruno Martelli; Carlo Petronio; Fionntan Roukema Exceptional Dehn surgery on the minimally twisted five-chain link, Commun. Anal. Geom., Volume 22 (2014) no. 4, pp. 689-735 | DOI | MR | Zbl

[26] Sergeĭ V. Matveev The theory of the complexity of three-dimensional manifolds, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint,, Volume 13 (1988) (32 pages) | MR

[27] Sergeĭ V. Matveev et al. The atlas of 3-manifolds (http://matlas.math.csu.ru)

[28] Jeffrey Meier Trisections and spun four-manifolds, Math. Res. Lett., Volume 25 (2018) no. 5, pp. 1497-1524 | DOI | MR | Zbl

[29] Jeffrey Meier; Alexander Zupan Genus-two trisections are standard, Geom. Topol., Volume 21 (2017) no. 3, pp. 1583-1630 | DOI | MR | Zbl

[30] Hironobu Naoe Shadows of 4-manifolds with complexity zero and polyhedral collapsing, Proc. Am. Math. Soc., Volume 145 (2017) no. 10, pp. 4561-4572 | DOI | MR | Zbl

[31] Hironobu Naoe Mazur manifolds and corks with small shadow complexities, Osaka J. Math., Volume 55 (2018) no. 3, pp. 479-498 | MR | Zbl

[32] Hironobu Naoe Corks with large shadow-complexity and exotic four-manifolds, Exp. Math., Volume 30 (2021) no. 2, pp. 157-171 | DOI | MR | Zbl

[33] Walter D. Neumann; Steven H. Weintraub Four-manifolds constructed via plumbing, Math. Ann., Volume 238 (1978), pp. 71-78 | DOI | MR | Zbl

[34] Jonathan Spreer; Stephan Tillmann The trisection genus of the standard simply connected PL 4-manifolds, 34th International Symposium on Computational Geometry (SoCG 2018) (Leibniz International Proceedings in Informatics (LIPIcs)), Volume 99, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018, p. 71:1-71:13 | MR | Zbl

[35] Vladimir G. Turaev Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 1994 | DOI | MR

[36] Ying-Qing Wu Dehn Surgery on Arborescent Links, Trans. Am. Math. Soc., Volume 351 (1999) no. 6, pp. 2275-2294 | MR | Zbl

[37] Ken’ichi Yoshida The minimal volume orientable hyperbolic 3-manifold with 4 cusps, Pac. J. Math., Volume 266 (2013) no. 2, pp. 457-476 | DOI | MR | Zbl

Cited by Sources: