Smooth manifolds are not the suitable context for trying to generalize the concept of rough paths on a manifold. Indeed, when one is working with smooth maps instead of Lipschitz maps and trying to solve a rough differential equation, one loses the quantitative estimates controlling the convergence of the Picard sequence. Moreover, even with a definition of rough paths in smooth manifolds, ordinary and rough differential equations can only be solved locally in such case. In this paper, we first recall the foundations of the Lipschitz geometry, introduced in [8], along with the main findings that encompass the classical theory of rough paths in Banach spaces. Then we give what we believe to be a minimal framework for defining rough paths on a manifold that is both less rigid than the classical one and emphasized on the local behaviour of rough paths. We end by explaining how this same idea can be used to define any notion of coloured paths on a manifold.
Les variétés régulières ne sont pas bien adaptées à la généralisation du concept des chemins rugueux aux variétés. En effet, quand on travaille avec des applications régulières plutôt que des applications Lipschitz pour résoudre une équation différentielle rugueuse, on perd les estimations quantitatives qui contrôlent la convergence des itérations de Picard. De plus, étant donne une définition de chemins rugueux sur variétés, on ne peut en général résoudre des équations différentielles ordinaires ou rugueuses que de manière locale. Dans cet article, on rappelle d’abord les fondations de la géométrie différentielle Lipschitz, introduite dans [8], ainsi que les principaux résultats qui généralisent ceux de la théorie classique des chemins rugueux dans les espaces de Banach. Ensuite on donne un cadre minimal pour la définition des chemins rugueux sur une variété qui est moins rigide que la précédente et qui met l’accent sur le comportement local des chemins rugueux. Finalement, on explique comment ces idées peuvent être appliquées pour généraliser la définition de tout chemin coloré à une variété.
Accepted:
Published online:
Keywords: Rough paths, rough analysis on manifolds
Youness Boutaib 1; Terry Lyons 2
@article{AFST_2022_6_31_4_1223_0, author = {Youness Boutaib and Terry Lyons}, title = {A new definition of rough paths on manifolds}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1223--1258}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {4}, year = {2022}, doi = {10.5802/afst.1717}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1717/} }
TY - JOUR AU - Youness Boutaib AU - Terry Lyons TI - A new definition of rough paths on manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1223 EP - 1258 VL - 31 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1717/ DO - 10.5802/afst.1717 LA - en ID - AFST_2022_6_31_4_1223_0 ER -
%0 Journal Article %A Youness Boutaib %A Terry Lyons %T A new definition of rough paths on manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1223-1258 %V 31 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1717/ %R 10.5802/afst.1717 %G en %F AFST_2022_6_31_4_1223_0
Youness Boutaib; Terry Lyons. A new definition of rough paths on manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 4, pp. 1223-1258. doi : 10.5802/afst.1717. https://afst.centre-mersenne.org/articles/10.5802/afst.1717/
[1] Abstract and concrete categories. The joy of cats, Pure and Applied Mathematics, John Wiley & Sons, 1990, xiv+482 pages | MR | Zbl
[2] A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder, Transl. Psychiatry, Volume 8 (2018) no. 1, pp. 1-7 | DOI
[3] Rough integrators on Banach manifolds, Bull. Sci. Math., Volume 151 (2019), pp. 51-65 | DOI | MR | Zbl
[4] Free diffusions, free entropy and free Fisher information, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 37 (2001) no. 5, pp. 581-606 | DOI | Numdam | MR | Zbl
[5] The signature of a rough path: uniqueness, Adv. Math., Volume 293 (2016), pp. 720-737 | DOI | MR | Zbl
[6] On Lipschitz maps and the Hölder regularity of flows, Rev. Roum. Math. Pures Appl., Volume 65 (2020) no. 2, pp. 129-175 | MR | Zbl
[7] Constrained rough paths, Proc. Lond. Math. Soc., Volume 111 (2015) no. 6, pp. 1471-1518 | DOI | MR | Zbl
[8] Rough paths on manifolds, New trends in stochastic analysis and related topics (Interdisciplinary Mathematical Sciences), Volume 12, World Scientific, 2012, pp. 33-88 | DOI | MR | Zbl
[9] Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. Math., Volume 65 (1957), pp. 163-178 | DOI | MR | Zbl
[10] Integration of paths—a faithful representation of paths by non-commutative formal power series, Trans. Am. Math. Soc., Volume 89 (1958), pp. 395-407 | DOI | MR | Zbl
[11] Persistence paths and signature features in topological data analysis, IEEE Trans. Pattern Anal. Mach. Intell., Volume 42 (2018) no. 1, pp. 192-202 | DOI
[12] On maps of bounded -variation with , Positivity, Volume 2 (1998) no. 1, pp. 19-45 | DOI | MR
[13] The spectral edge of unitary Brownian motion, Probab. Theory Relat. Fields, Volume 170 (2018) no. 1-2, pp. 49-93 | DOI | MR | Zbl
[14] Controlled rough paths on manifolds I, Rev. Mat. Iberoam., Volume 33 (2017) no. 3, pp. 885-950 | DOI | MR | Zbl
[15] Stochastic differential equations on manifolds, London Mathematical Society Lecture Note Series, 70, Cambridge University Press, 1982, xiii+326 pages | DOI | MR
[16] A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014, xiv+251 pages | DOI | MR
[17] Multidimensional stochastic processes as rough paths. Theory and applications, Cambridge Studies in Advanced Mathematics, 120, Cambridge University Press, 2010, xiv+656 pages | DOI | MR
[18] Sparse arrays of signatures for online character recognition (2013) (https://arxiv.org/abs/1308.0371)
[19] Controlling rough paths, J. Funct. Anal., Volume 216 (2004) no. 1, pp. 86-140 | DOI | MR | Zbl
[20] Ramification of rough paths, J. Differ. Equations, Volume 248 (2010) no. 4, pp. 693-721 | DOI | MR | Zbl
[21] Paraproducts, rough paths and controlled distributions (2012) (https://arxiv.org/abs/1210.2684)
[22] A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | MR | Zbl
[23] Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. Math., Volume 171 (2010) no. 1, pp. 109-167 | DOI | MR | Zbl
[24] Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2003, xviii+628 pages | DOI | MR
[25] Stochastic differential equations on noncompact manifolds: moment stability and its topological consequences, Probab. Theory Relat. Fields, Volume 100 (1994) no. 4, pp. 417-428 | DOI | MR | Zbl
[26] Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young, Math. Res. Lett., Volume 1 (1994) no. 4, pp. 451-464 | DOI | MR | Zbl
[27] System control and rough paths, Oxford Mathematical Monographs, Oxford University Press, 2002, x+216 pages (Oxford Science Publications) | DOI | MR
[28] Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl
[29] Differential equations driven by rough paths, Lecture Notes in Mathematics, 1908, Springer, 2007, xviii+109 pages (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, with an introduction concerning the Summer School by Jean Picard) | DOI | MR
[30] Convergence of the empirical spectral measure of unitary Brownian motion, Ann. Henri Lebesgue, Volume 1 (2018), pp. 247-265 | DOI | Numdam | MR | Zbl
[31] Interest rate models on Lie groups, Quant. Finance, Volume 11 (2011) no. 4, pp. 559-572 | DOI | MR
[32] Free Lie algebras, London Mathematical Society Monographs. New Series, 7, Clarendon Press, 1993, xviii+269 pages (Oxford Science Publications) | MR
[33] Attitude estimation and Brownian motion on SO (3), 49th IEEE Conference on Decision and Control (CDC) (2010), pp. 4857-4862 | DOI
[34] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970, xiv+290 pages | MR
[35] Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934) no. 1, pp. 63-89 | DOI | MR | Zbl
Cited by Sources: