[La conjecture de Marton pour des groupes abéliens à torsion bornée]
We prove a Freiman–Ruzsa-type theorem with polynomial bounds in arbitrary abelian groups with bounded torsion, thereby proving (in full generality) a conjecture of Marton. Specifically, let $G$ be an abelian group of torsion $m$ (meaning $mg=0$ for all $g \in G$) and suppose that $A$ is a non-empty subset of $G$ with $|A+A| \le K|A|$. Then $A$ can be covered by at most $(2K)^{O(m^3)}$ translates of a subgroup $H \le G$ of cardinality at most $|A|$. The argument is a variant of that used in the case $G = \mathbf{F}_2^n$ in a recent paper of the authors.
Nous démontrons un théorème de type Freiman–Ruzsa avec des bornes polynomiales pour des groupes abéliens arbitraires à torsion bornée, prouvant ainsi (en toute généralité) une conjecture de Marton. Plus précisément, soit $G$ un groupe abélien de torsion $m$ (c’est-à-dire $mg=0$ pour tout $g$ dans $G$) et soit $A$ un sous-ensemble non vide de $G$ tel que $|A+A| \le K|A|$. Alors $A$ peut être couvert par au plus $(2K)^{O(m^3)}$ translatés d’un sous-groupe $H \le G$ de taille au plus $|A|$. L’argument est une variante de celui utilisé dans le cas $G = \mathbf{F}_2^n$ dans un article récent des auteurs.
Accepté le :
Publié le :
Keywords: Freiman-Ruzsa, Marton’s conjecture, sumsets, entropy
Mots-clés : semblable banalité, autosimilarité logarithmique, loi de Gauß
W. Timothy Gowers  1 ; Ben J. Green  2 ; Freddie Manners  3 ; Terence Tao  4
CC-BY 4.0
@article{AFST_2026_6_35_1_1_0,
author = {W. Timothy Gowers and Ben J. Green and Freddie Manners and Terence Tao},
title = {Marton{\textquoteright}s conjecture in abelian groups with bounded torsion},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {1--33},
year = {2026},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 35},
number = {1},
doi = {10.5802/afst.1839},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1839/}
}
TY - JOUR AU - W. Timothy Gowers AU - Ben J. Green AU - Freddie Manners AU - Terence Tao TI - Marton’s conjecture in abelian groups with bounded torsion JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2026 SP - 1 EP - 33 VL - 35 IS - 1 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1839/ DO - 10.5802/afst.1839 LA - en ID - AFST_2026_6_35_1_1_0 ER -
%0 Journal Article %A W. Timothy Gowers %A Ben J. Green %A Freddie Manners %A Terence Tao %T Marton’s conjecture in abelian groups with bounded torsion %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2026 %P 1-33 %V 35 %N 1 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1839/ %R 10.5802/afst.1839 %G en %F AFST_2026_6_35_1_1_0
W. Timothy Gowers; Ben J. Green; Freddie Manners; Terence Tao. Marton’s conjecture in abelian groups with bounded torsion. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 1-33. doi: 10.5802/afst.1839
[1] Sums of dilates, Comb. Probab. Comput., Volume 17 (2008) no. 5, pp. 627-639 | DOI | MR | Zbl
[2] On the inverse theorem for Gowers norms in abelian groups of bounded torsion (2023) | arXiv | Zbl
[3] On a conjecture of Marton, Ann. Math. (2), Volume 201 (2025) no. 2, pp. 515-549 | Zbl
[4] Sumsets and entropy revisited, Random Struct. Algorithms, Volume 66 (2025) no. 1, e21252, 33 pages | DOI | MR | Zbl
[5] An inverse theorem for the Gowers norm, Proc. Edinb. Math. Soc., II. Ser., Volume 51 (2008) no. 1, pp. 73-153 | DOI | MR | Zbl
[6] An equivalence between inverse sumset theorems and inverse conjectures for the norm, Math. Proc. Camb. Philos. Soc., Volume 149 (2010) no. 1, pp. 1-19 | DOI | MR | Zbl
[7] Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | MR | Zbl
[8] Improved Exponent for Marton’s Conjecture in (2024) | arXiv | Zbl
[9] Equivalence of polynomial conjectures in additive combinatorics, Combinatorica, Volume 32 (2012) no. 5, pp. 607-618 | DOI | MR | Zbl
[10] On the entropy of sums, Information Theory Workshop 2008. ITW ’08, IEEE Press, 2008, pp. 303-307 | DOI | Zbl
[11] Sumsets and entropy, Random Struct. Algorithms, Volume 34 (2009) no. 1, pp. 1-10 | DOI | MR | Zbl
[12] Low-degree tests at large distances, STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM Press (2007), pp. 506-515 | DOI | MR | Zbl
[13] On the Bogolyubov-Ruzsa lemma, Anal. PDE, Volume 5 (2012) no. 3, pp. 627-655 | DOI | MR | Zbl
[14] The structure theory of set addition revisited, Bull. Am. Math. Soc., Volume 50 (2013) no. 1, pp. 93-127 | DOI | MR | Zbl
[15] Sumset and inverse sumset theory for Shannon entropy, Comb. Probab. Comput., Volume 19 (2010) no. 4, pp. 603-639 | DOI | MR | Zbl
[16] Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2010, xviii+512 pages | MR | Zbl
Cité par Sources :