Marton’s conjecture in abelian groups with bounded torsion
[La conjecture de Marton pour des groupes abéliens à torsion bornée]
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 1-33

We prove a Freiman–Ruzsa-type theorem with polynomial bounds in arbitrary abelian groups with bounded torsion, thereby proving (in full generality) a conjecture of Marton. Specifically, let $G$ be an abelian group of torsion $m$ (meaning $mg=0$ for all $g \in G$) and suppose that $A$ is a non-empty subset of $G$ with $|A+A| \le K|A|$. Then $A$ can be covered by at most $(2K)^{O(m^3)}$ translates of a subgroup $H \le G$ of cardinality at most $|A|$. The argument is a variant of that used in the case $G = \mathbf{F}_2^n$ in a recent paper of the authors.

Nous démontrons un théorème de type Freiman–Ruzsa avec des bornes polynomiales pour des groupes abéliens arbitraires à torsion bornée, prouvant ainsi (en toute généralité) une conjecture de Marton. Plus précisément, soit $G$ un groupe abélien de torsion $m$ (c’est-à-dire $mg=0$ pour tout $g$ dans $G$) et soit $A$ un sous-ensemble non vide de $G$ tel que $|A+A| \le K|A|$. Alors $A$ peut être couvert par au plus $(2K)^{O(m^3)}$ translatés d’un sous-groupe $H \le G$ de taille au plus $|A|$. L’argument est une variante de celui utilisé dans le cas $G = \mathbf{F}_2^n$ dans un article récent des auteurs.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1839
Classification : 10X99, 14A12, 11L05
Keywords: Freiman-Ruzsa, Marton’s conjecture, sumsets, entropy
Mots-clés : semblable banalité, autosimilarité logarithmique, loi de Gauß

W. Timothy Gowers  1   ; Ben J. Green  2   ; Freddie Manners  3   ; Terence Tao  4

1 Collège de France, 11, place Marcelin-Berthelot, 75231 Paris 05, France, and Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK
2 Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford OX2 6QW, UK
3 Department of Mathematics, University of California San Diego, 9500 Gilman Drive # 0112, La Jolla, CA 92093-0112, USA
4 Math Sciences Building, 520 Portola Plaza, Box 951555, Los Angeles, CA 90095, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2026_6_35_1_1_0,
     author = {W. Timothy Gowers and Ben J. Green and Freddie Manners and Terence Tao},
     title = {Marton{\textquoteright}s conjecture in abelian groups with bounded torsion},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1--33},
     year = {2026},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 35},
     number = {1},
     doi = {10.5802/afst.1839},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1839/}
}
TY  - JOUR
AU  - W. Timothy Gowers
AU  - Ben J. Green
AU  - Freddie Manners
AU  - Terence Tao
TI  - Marton’s conjecture in abelian groups with bounded torsion
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2026
SP  - 1
EP  - 33
VL  - 35
IS  - 1
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1839/
DO  - 10.5802/afst.1839
LA  - en
ID  - AFST_2026_6_35_1_1_0
ER  - 
%0 Journal Article
%A W. Timothy Gowers
%A Ben J. Green
%A Freddie Manners
%A Terence Tao
%T Marton’s conjecture in abelian groups with bounded torsion
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2026
%P 1-33
%V 35
%N 1
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1839/
%R 10.5802/afst.1839
%G en
%F AFST_2026_6_35_1_1_0
W. Timothy Gowers; Ben J. Green; Freddie Manners; Terence Tao. Marton’s conjecture in abelian groups with bounded torsion. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 1-33. doi: 10.5802/afst.1839

[1] Boris Bukh Sums of dilates, Comb. Probab. Comput., Volume 17 (2008) no. 5, pp. 627-639 | DOI | MR | Zbl

[2] Pablo Candela; Diego González-Sánchez; Balázs Szegedy On the inverse theorem for Gowers norms in abelian groups of bounded torsion (2023) | arXiv | Zbl

[3] William T. Gowers; Ben Green; Freddie Manners; Terence Tao On a conjecture of Marton, Ann. Math. (2), Volume 201 (2025) no. 2, pp. 515-549 | Zbl

[4] Ben Green; Freddie Manners; Terence Tao Sumsets and entropy revisited, Random Struct. Algorithms, Volume 66 (2025) no. 1, e21252, 33 pages | DOI | MR | Zbl

[5] Ben Green; Terence Tao An inverse theorem for the Gowers U 3 (G) norm, Proc. Edinb. Math. Soc., II. Ser., Volume 51 (2008) no. 1, pp. 73-153 | DOI | MR | Zbl

[6] Ben Green; Terence Tao An equivalence between inverse sumset theorems and inverse conjectures for the U 3 norm, Math. Proc. Camb. Philos. Soc., Volume 149 (2010) no. 1, pp. 1-19 | DOI | MR | Zbl

[7] Vadim A. Kaĭmanovich; Anatoli M. Vershik Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | MR | Zbl

[8] Jyun-Jie Liao Improved Exponent for Marton’s Conjecture in F 2 n (2024) | arXiv | Zbl

[9] Shachar Lovett Equivalence of polynomial conjectures in additive combinatorics, Combinatorica, Volume 32 (2012) no. 5, pp. 607-618 | DOI | MR | Zbl

[10] Mokshay Madiman On the entropy of sums, Information Theory Workshop 2008. ITW ’08, IEEE Press, 2008, pp. 303-307 | DOI | Zbl

[11] Imre Z. Ruzsa Sumsets and entropy, Random Struct. Algorithms, Volume 34 (2009) no. 1, pp. 1-10 | DOI | MR | Zbl

[12] Alex Samorodnitsky Low-degree tests at large distances, STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM Press (2007), pp. 506-515 | DOI | MR | Zbl

[13] Tom Sanders On the Bogolyubov-Ruzsa lemma, Anal. PDE, Volume 5 (2012) no. 3, pp. 627-655 | DOI | MR | Zbl

[14] Tom Sanders The structure theory of set addition revisited, Bull. Am. Math. Soc., Volume 50 (2013) no. 1, pp. 93-127 | DOI | MR | Zbl

[15] Terence Tao Sumset and inverse sumset theory for Shannon entropy, Comb. Probab. Comput., Volume 19 (2010) no. 4, pp. 603-639 | DOI | MR | Zbl

[16] Terence Tao; Van H. Vu Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2010, xviii+512 pages | MR | Zbl

Cité par Sources :