[Feuilletages holomorphes sans structure projective transverse]
We prove that on the product of two elliptic curves a generic nonsingular turbulent holomorphic foliation does not admit any transversely holomorphic projective structure.
Nous prouvons que sur le produit de deux courbes elliptiques un feuilletage holomorphe tourbillonné nonsingulier générique n’admet aucune structure projective holomorphe transverse.
Accepté le :
Publié le :
Keywords: Holomorphic foliation, projective structure, transversely projective structure, flat bundle
Indranil Biswas  1 ; Sorin Dumitrescu  2
CC-BY 4.0
@article{AFST_2026_6_35_1_35_0,
author = {Indranil Biswas and Sorin Dumitrescu},
title = {Holomorphic foliations with no transversely projective structure},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {35--56},
year = {2026},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 35},
number = {1},
doi = {10.5802/afst.1840},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1840/}
}
TY - JOUR AU - Indranil Biswas AU - Sorin Dumitrescu TI - Holomorphic foliations with no transversely projective structure JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2026 SP - 35 EP - 56 VL - 35 IS - 1 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1840/ DO - 10.5802/afst.1840 LA - en ID - AFST_2026_6_35_1_35_0 ER -
%0 Journal Article %A Indranil Biswas %A Sorin Dumitrescu %T Holomorphic foliations with no transversely projective structure %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2026 %P 35-56 %V 35 %N 1 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1840/ %R 10.5802/afst.1840 %G en %F AFST_2026_6_35_1_35_0
Indranil Biswas; Sorin Dumitrescu. Holomorphic foliations with no transversely projective structure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 35 (2026) no. 1, pp. 35-56. doi: 10.5802/afst.1840
[1] Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | Zbl | DOI
[2] Transversely affine and transversely projective holomorphic foliations, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 2, pp. 169-204 | Zbl | Numdam | MR
[3] Connections and Higgs fields on a principal bundle, Ann. Global Anal. Geom., Volume 33 (2008) no. 1, pp. 19-46 | Zbl | DOI | MR
[4] Projective structures on a Riemann surface. II, Int. Math. Res. Not., Volume 1999 (1999) no. 13, pp. 685-716 | Zbl | DOI | MR
[5] Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 5, pp. 569-594 | Zbl | DOI | Numdam | MR
[6] Codimension one foliations on complex tori, Ann. Fac. Sci. Toulouse, Math., Volume 19 (2010) no. 2, pp. 405-418 | Zbl | DOI | Numdam
[7] Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, 163, Springer, 1970, 133 pages | Zbl | DOI
[8] Feuilletages holomorphes de codimension un sur les espaces homogènes complexes, Ann. Fac. Sci. Toulouse, Math., Volume 5 (1996) no. 3, pp. 493-519 | Zbl | Numdam | DOI | MR
[9] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 1-361 (rédigé avec la colloboration de J. Dieudonné) | Numdam | Zbl | MR
[10] Lectures on Riemann Surfaces, Princeton Mathematical Notes, Princeton University Press, 1966 | Zbl | MR
[11] The monodromy of projective structures, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (Annals of Mathematics Studies), Volume 97, Princeton University Press, 1978, pp. 257-275 | Zbl
[12] Some qualitative aspects of transversely projective foliations, Proc. Japan Acad., Ser. A, Volume 65 (1989) no. 4, pp. 116-118 | Zbl | MR
[13] Smooth foliations on homogeneous compact Kähler manifolds, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 1, pp. 141-159 | DOI | Numdam | Zbl | MR
[14] Transversely projective foliations on surfaces: existence of minimal form and prescription of monodromy, Int. J. Math., Volume 18 (2007) no. 6, p. 723-74 | DOI | Zbl | MR
[15] Representations of quasi-projective groups, flat connections and transversely projective foliations, J. Éc. Polytech., Math., Volume 3 (2006), pp. 263-308 | Zbl | DOI | MR
[16] Sur les structures transversalement affines des feuilletages de codimension, Ann. Inst. Fourier, Volume 30 (1980) no. 1, pp. 1-29 | Zbl | Numdam | DOI | MR
Cité par Sources :