@article{AFST_1984_5_6_1_33_0, author = {Rivera Rodriguez, Pedro Humberto}, title = {Optimal control of unstable non linear evolution systems}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {33--50}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 5, 6}, number = {1}, year = {1984}, doi = {10.5802/afst.602}, zbl = {0547.49014}, mrnumber = {771348}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1984_5_6_1_33_0/} }
Pedro Humberto Rivera Rodriguez. Optimal control of unstable non linear evolution systems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 6 (1984) no. 1, pp. 33-50. doi : 10.5802/afst.602. https://afst.centre-mersenne.org/item/AFST_1984_5_6_1_33_0/
[1] «Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles». Du nod-Paris (1968). | MR 244606 | Zbl 0179.41801
.[2] «Quelques méthodes de résolution des problèmes aux limites non-linéaires». Dunod-Paris (1969). | MR 259693 | Zbl 0189.40603
.[3] «Some methods in the Mathematical analysis of systems and their control». Science Press - Beijing and Gordon Breach - N.Y. (1962). | MR 664760 | Zbl 0542.93034
.[4] «Optimal control of unstable distributed systems». Pekin, (1982).
.[5] «Contrôle optimal de systèmes distribués singuliers». Dunod-Paris. (1983). | MR 244606 | Zbl 0179.41801
.[6] «Problèmes aux limites non homogènes et applications». Vol 1 and 2, Dunod-Paris (1968). | MR 247243 | Zbl 0165.10801
and .[7]
. To appear.[8] «On the optimal control of non well posed linear evolution systems». (To appear). | MR 965677 | Zbl 0648.49015
.[9] «Applications of functional analysis to equations of mathematical physics». Leningrad (1950).
.[10] «Necessary conditions for distributed control problems governed by parabolic variational inequalities». SIAM J. on control and Optimizations, 19 (1), (1981), p. 64-86. | MR 603081 | Zbl 0474.49024
.[11] «Integral representation of functions and Embedding theorems». (In Russian), Moscow (1975).
.: and .