logo AFST
Local Class Field Theory via Lubin-Tate Theory
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 2, pp. 411-438.

Nous présentons une démonstration complète de la théorie du corps de classes locale via la théorie de Lubin-Tate et le théorème de Hasse-Arf, en raffinant des arguments d’Iwasawa [9].

We give a self-contained exposition of local class field theory, via Lubin-Tate theory and the Hasse-Arf theorem, refining the arguments of Iwasawa [9].

Reçu le : 2006-06-04
Accepté le : 2008-07-06
Publié le : 2008-12-11
DOI : https://doi.org/10.5802/afst.1188
@article{AFST_2008_6_17_2_411_0,
     author = {Teruyoshi Yoshida},
     title = {Local Class Field Theory via Lubin-Tate Theory},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {411--438},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 17},
     number = {2},
     year = {2008},
     doi = {10.5802/afst.1188},
     zbl = {pre05503161},
     mrnumber = {2487860},
     language = {en},
     url = {afst.centre-mersenne.org/item/AFST_2008_6_17_2_411_0/}
}
Teruyoshi Yoshida. Local Class Field Theory via Lubin-Tate Theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 17 (2008) no. 2, pp. 411-438. doi : 10.5802/afst.1188. https://afst.centre-mersenne.org/item/AFST_2008_6_17_2_411_0/

[1] Atiyah (M.F.), Macdonald (I.G.).— Introduction to commutative algebra, Addison-Wesley, (1969). | MR 242802 | Zbl 0175.03601

[2] Carayol (H.).— Non-abelian Lubin-Tate theory, in : Automorphic Forms, Shimura Varieties, and L-functions (Academic Press, 1990), p. 15-39. | MR 1044827 | Zbl 0704.11049

[3] Cassels (J.W.S.).— Local Fields, London Mathematical Society Student Texts 3, Cambridge Univ. Press, (1986). | MR 861410 | Zbl 0595.12006

[4] Coleman (R.).— Division values in local fields, Invent. Math. 53, p. 91-116 (1979). | MR 560409 | Zbl 0429.12010

[5] de Shalit (E.).— Relative Lubin-Tate groups, Proc. Amer. Math. Soc. 95, p. 1-4 (1985). | MR 796434 | Zbl 0578.12013

[6] Fesenko (I.B.), Vostokov (S.V.).— Local Fields and their Extensions, 2nd ed., Translations of Mathematical Monographs 121, AMS, (2002). | MR 1915966 | Zbl pre01793794

[7] Gold (R.).— Local class field theory via Lubin-Tate groups, Indiana Univ. Math. J. 30, p. 795-798 (1981). | MR 625603 | Zbl 0596.12014

[8] Hazewinkel (M.).— Local class field theory is easy, Advances in Math. 18-2, p. 148-181 (1975). | MR 389858 | Zbl 0312.12022

[9] Iwasawa (K.).— Local Class Field Theory, Oxford Univ. Press, (1986). | MR 863740 | Zbl 0604.12014

[10] Lubin (J.).— The local Kronecker-Weber theorem, Trans. Amer. Math. Soc. 267-1, p. 133-138 (1981). | MR 621978 | Zbl 0476.12014

[11] Lubin (J.), Tate (J.).— Formal complex multiplication in local fields, Ann. Math. 81, p. 380-387 (1965). | MR 172878 | Zbl 0128.26501

[12] Neukirch (J.).— Class Field Theory, Grundlehren der Mathematischen Wissenschaften 280, Springer-Verlag, (1986). | MR 819231 | Zbl 0587.12001

[13] Rosen (M.).— An elementary proof of the Kronecker-Weber theorem, Trans. Amer. Math. Soc. 265-2, p. 599-605. (1981) | MR 610968 | Zbl 0474.12014

[14] Sen (S.).— On automorphisms of local fields, Ann. Math. 90 (1969), p. 33-46. | MR 244214 | Zbl 0199.36301

[15] Serre (J.-P.).— Corps Locaux, 2nd ed., Hermann, 1968. (English translation : Local fields, Graduate Texts in Mathematics 67, Springer-Verlag, (1979).) | MR 354618 | Zbl 0137.02601

[16] Serre (J.-P.).— Local class field theory, in : Algebraic Number Theory (Thompson, 1967), p. 128-161. | MR 220701