In this work, we consider a simple differential operator as well as perturbations. While the spectrum of the unperturbed operator is confined to a line inside the pseudospectrum, we show for the perturbed operators that the eigenvalues are distributed inside the pseudospectrum according to a bidimensional Weyl law.
Dans ce travail, nous considérons un opérateur différentiel simple ainsi que des perturbations. Alors que le spectre de l’opérateur non-perturbé est confiné à une droite à l’intérieur du pseudospectre, nous montrons pour les opérateurs perturbés que les valeurs propres se distribuent à l’intérieur du pseudospectre d’après une loi de Weyl.
@article{AFST_2006_6_15_2_243_0, author = {Mildred Hager}, title = {Instabilit\'e spectrale semiclassique pour des op\'erateurs {non-autoadjoints~I~:} un mod\`ele}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {243--280}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {6e s{\'e}rie, 15}, number = {2}, year = {2006}, doi = {10.5802/afst.1121}, mrnumber = {2244217}, zbl = {05136604}, language = {fr}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1121/} }
TY - JOUR AU - Mildred Hager TI - Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I : un modèle JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 243 EP - 280 VL - 15 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1121/ DO - 10.5802/afst.1121 LA - fr ID - AFST_2006_6_15_2_243_0 ER -
%0 Journal Article %A Mildred Hager %T Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I : un modèle %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 243-280 %V 15 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1121/ %R 10.5802/afst.1121 %G fr %F AFST_2006_6_15_2_243_0
Mildred Hager. Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I : un modèle. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 2, pp. 243-280. doi : 10.5802/afst.1121. https://afst.centre-mersenne.org/articles/10.5802/afst.1121/
[1] Lectures on elliptic boundary value problems, Mathematical studies, Van Nostrand, 1965 | MR | Zbl
[2] Semiclassical states for Non-Self-Adjoint Schrödinger Operators, Commun. Math. Phys., Volume 200 (1999), pp. 35-41 | MR | Zbl
[3] Resonance Expansion, Semi-Classical Propagation, Volume 223, Commun. Math. Phys., 2001, pp. 1-12 | MR | Zbl
[4] Pseudospectra of differential operators, J.Operator theory, Volume 43 (2000), pp. 243-262 | MR | Zbl
[5] Semigroup growth bounds (preprint, http://xxx.lanl.gov/abs/math.SP/0302144) | MR
[6] The analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, 1-3, Springer-Verlag, Berlin, 1983-1985 no. 256, 257, 274
[7] Distribution of Zeros of entire functions, Translations of mathematical Monographs, AMS, Providence, 1964 | MR | Zbl
[8] Pseudospectra of the Orr-Sommerfeld operator, Siam J. Appl. Math., Volume 53 (1993), pp. 15-45 | MR | Zbl
[9] Microlocal Analysis for Differential Operators, LMS LN, 196, Cambridge University press, 1994 | MR | Zbl
[10] Spectral Asymptotics in the Semi-Classical Limit, LMS LN, 268, Cambridge University press, 1999 | MR | Zbl
[11] Singularités analytiques microlocales, Astérisque, Volume 95, Soc. Math. France, Paris, 1982 | MR | Zbl
[12] Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math., Volume 57 (2004), pp. 384-415 | MR | Zbl
[13] Lectures on resonances (http://daphne.math.polytechnique.fr/)
[14] Resonance expansion of scattered waves, Comm. Pure Appl. Math., Volume 53 (2000), pp. 1305-1334 | MR | Zbl
[15] The theory of functions, Oxford University Press, Oxford, 1939
[16] Pseudospectra of matrices, Numerical analysis (Pitman Res. Notes Math. Ser.), Volume 260, Longman Sci. Tech., 1991, pp. 234-266 | MR | Zbl
[17] Pseudospectra of linear operators, SIAM, Volume 39 (1997) no. 3, pp. 383-406 | MR | Zbl
[18] Wave packet Pseudomodes of variable coefficient differential operators, Proceedings of the Royal Society, Series A, Volume 461 (2005), pp. 3099-3122 | MR
[19] A remark on a paper of E.B. Davies, Proceedings of the AMS, Volume 129 (1999), pp. 2955-2957 | MR | Zbl
[20] Numerical linear algebra and solvability of partial differential equations, Comm. Math. Phys., Volume 229 (2002), pp. 293-307 | MR | Zbl
Cited by Sources: