Representations of non-negative polynomials having finitely many zeros
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 3, pp. 599-609.

Consider a compact subset K of real n-space defined by polynomial inequalities g 1 0,,g s 0. For a polynomial f non-negative on K, natural sufficient conditions are given (in terms of first and second derivatives at the zeros of f in K) for f to have a presentation of the form f=t 0 +t 1 g 1 ++t s g s , t i a sum of squares of polynomials. The conditions are much less restrictive than the conditions given by Scheiderer in [11, Cor. 2.6]. The proof uses Scheiderer’s main theorem in [11] as well as arguments from quadratic form theory and valuation theory. We also explain how the basic lemma of Kuhlmann, Marshall and Schwartz in [3] can be used to simplify the proof of Scheiderer’s main theorem, and compare the two approaches.

Soit K une partie compacte de R n définie par les inégalités polynomiales g 1 0,...,g s 0. Pour un polynôme positif f sur K, des conditions suffisantes naturelles sont dégagées (en termes des dérivées premières et secondes en les zéros de f dans K) pour que f puisse se représenter sous la forme f=t 0 +t 1 g 1 ++t s g s , où les t i sont des sommes de carrés de polynômes. Les conditions sont bien plus générales que celles mises en évidence par Scheiderer dans [11, Cor. 2.6]. La démonstration utilise le théorème principal de Scheiderer [11] ainsi que des arguments de la théorie des formes quadratiques et de celle de la valuation. L’article explique également comment le lemme fondamental de Kuhlmann, Marshall et Schwartz [3] peut être mis à profit pour simplifier le théorème principal de Scheiderer, et compare les deux approches.

DOI: 10.5802/afst.1131

Murray Marshall 1

1 Department of Computer Science, University of Saskatchewan, Saskatoon, SK Canada, S7N 5E6
@article{AFST_2006_6_15_3_599_0,
     author = {Murray Marshall},
     title = {Representations of non-negative polynomials having finitely many zeros},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {599--609},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 15},
     number = {3},
     year = {2006},
     doi = {10.5802/afst.1131},
     mrnumber = {2246416},
     zbl = {1130.13015},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1131/}
}
TY  - JOUR
AU  - Murray Marshall
TI  - Representations of non-negative polynomials having finitely many zeros
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2006
SP  - 599
EP  - 609
VL  - 15
IS  - 3
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1131/
DO  - 10.5802/afst.1131
LA  - en
ID  - AFST_2006_6_15_3_599_0
ER  - 
%0 Journal Article
%A Murray Marshall
%T Representations of non-negative polynomials having finitely many zeros
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2006
%P 599-609
%V 15
%N 3
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1131/
%R 10.5802/afst.1131
%G en
%F AFST_2006_6_15_3_599_0
Murray Marshall. Representations of non-negative polynomials having finitely many zeros. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 3, pp. 599-609. doi : 10.5802/afst.1131. https://afst.centre-mersenne.org/articles/10.5802/afst.1131/

[1] T. Jacobi A representation theorem for certain partially ordered commutative rings, Math. Zeit., Volume 237 (2001), pp. 223-235 | MR | Zbl

[2] T. Jacobi; A. Prestel Distinguished presentations of strictly positive polynomials, J. reine angew. Math., Volume 532 (2001), pp. 223-235 | MR | Zbl

[3] S. Kuhlmann; M. Marshall; N. Schwartz Positivity, sums of squares and the multi-dimensional moment problem II (Advances in Geometry, to appear) | MR | Zbl

[4] J. B. Lasserre Optimization globale et théorie des moments, C. R. Acad. Sci. Paris, Série I, Volume 331 (2000), pp. 929-934 | MR | Zbl

[5] M. Marshall Optimization of polynomial functions, Canad. Math. Bull., Volume 46 (2003), pp. 575-587 | MR | Zbl

[6] M. Marshall Positive polynomials and sums of squares, Univ. Pisa (2000) (Ph. D. Thesis)

[7] A. Prestel; C. Delzell Positive Polynomials: From Hilbert’s 17th problem to real algebra, Springer Monographs in Mathematics, 2001 | MR | Zbl

[8] M. Putinar Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993), pp. 969-984 | MR | Zbl

[9] C. Scheiderer Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc., Volume 352 (1999), pp. 1039-1069 | MR | Zbl

[10] C. Scheiderer Sums of squares on real algebraic curves, Math. Zeit., Volume 245 (2003), pp. 725-760 | MR | Zbl

[11] C. Scheiderer Distinguished representations of non-negative polynomials (to appear) | MR | Zbl

[12] K. Schmüdgen The K-moment problem for compact semi-algebraic sets, Math. Ann., Volume 289 (1991), pp. 203-206 | MR | Zbl

Cited by Sources: