Consider a compact subset of real -space defined by polynomial inequalities . For a polynomial non-negative on , natural sufficient conditions are given (in terms of first and second derivatives at the zeros of in ) for to have a presentation of the form , a sum of squares of polynomials. The conditions are much less restrictive than the conditions given by Scheiderer in [11, Cor. 2.6]. The proof uses Scheiderer’s main theorem in [11] as well as arguments from quadratic form theory and valuation theory. We also explain how the basic lemma of Kuhlmann, Marshall and Schwartz in [3] can be used to simplify the proof of Scheiderer’s main theorem, and compare the two approaches.
Soit une partie compacte de définie par les inégalités polynomiales . Pour un polynôme positif sur , des conditions suffisantes naturelles sont dégagées (en termes des dérivées premières et secondes en les zéros de dans ) pour que puisse se représenter sous la forme , où les sont des sommes de carrés de polynômes. Les conditions sont bien plus générales que celles mises en évidence par Scheiderer dans [11, Cor. 2.6]. La démonstration utilise le théorème principal de Scheiderer [11] ainsi que des arguments de la théorie des formes quadratiques et de celle de la valuation. L’article explique également comment le lemme fondamental de Kuhlmann, Marshall et Schwartz [3] peut être mis à profit pour simplifier le théorème principal de Scheiderer, et compare les deux approches.
@article{AFST_2006_6_15_3_599_0, author = {Murray Marshall}, title = {Representations of non-negative polynomials having finitely many zeros}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {599--609}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {3}, year = {2006}, doi = {10.5802/afst.1131}, mrnumber = {2246416}, zbl = {1130.13015}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1131/} }
TY - JOUR AU - Murray Marshall TI - Representations of non-negative polynomials having finitely many zeros JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 599 EP - 609 VL - 15 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1131/ DO - 10.5802/afst.1131 LA - en ID - AFST_2006_6_15_3_599_0 ER -
%0 Journal Article %A Murray Marshall %T Representations of non-negative polynomials having finitely many zeros %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 599-609 %V 15 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1131/ %R 10.5802/afst.1131 %G en %F AFST_2006_6_15_3_599_0
Murray Marshall. Representations of non-negative polynomials having finitely many zeros. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 3, pp. 599-609. doi : 10.5802/afst.1131. https://afst.centre-mersenne.org/articles/10.5802/afst.1131/
[1] A representation theorem for certain partially ordered commutative rings, Math. Zeit., Volume 237 (2001), pp. 223-235 | MR | Zbl
[2] Distinguished presentations of strictly positive polynomials, J. reine angew. Math., Volume 532 (2001), pp. 223-235 | MR | Zbl
[3] Positivity, sums of squares and the multi-dimensional moment problem II (Advances in Geometry, to appear) | MR | Zbl
[4] Optimization globale et théorie des moments, C. R. Acad. Sci. Paris, Série I, Volume 331 (2000), pp. 929-934 | MR | Zbl
[5] Optimization of polynomial functions, Canad. Math. Bull., Volume 46 (2003), pp. 575-587 | MR | Zbl
[6] Positive polynomials and sums of squares, Univ. Pisa (2000) (Ph. D. Thesis)
[7] Positive Polynomials: From Hilbert’s 17th problem to real algebra, Springer Monographs in Mathematics, 2001 | MR | Zbl
[8] Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993), pp. 969-984 | MR | Zbl
[9] Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc., Volume 352 (1999), pp. 1039-1069 | MR | Zbl
[10] Sums of squares on real algebraic curves, Math. Zeit., Volume 245 (2003), pp. 725-760 | MR | Zbl
[11] Distinguished representations of non-negative polynomials (to appear) | MR | Zbl
[12] The -moment problem for compact semi-algebraic sets, Math. Ann., Volume 289 (1991), pp. 203-206 | MR | Zbl
Cited by Sources: