In this paper we describe the orbit structure of -actions of on the solid torus having and as the only compact orbits, and as singular set.
Nous décrivons la structure des orbites des actions de class de sur le tore solide ayant uniquement et comme orbites compacts, et comme ensemble singulier.
@article{AFST_2008_6_17_3_613_0, author = {C. Maquera and L. F. Martins}, title = {Orbit {Structure} of certain ${\mathbb{R}}^{2}$-actions on solid torus}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {613--633}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 17}, number = {3}, year = {2008}, doi = {10.5802/afst.1195}, mrnumber = {2488234}, zbl = {1170.57029}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1195/} }
TY - JOUR AU - C. Maquera AU - L. F. Martins TI - Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2008 SP - 613 EP - 633 VL - 17 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1195/ DO - 10.5802/afst.1195 LA - en ID - AFST_2008_6_17_3_613_0 ER -
%0 Journal Article %A C. Maquera %A L. F. Martins %T Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2008 %P 613-633 %V 17 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1195/ %R 10.5802/afst.1195 %G en %F AFST_2008_6_17_3_613_0
C. Maquera; L. F. Martins. Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 3, pp. 613-633. doi : 10.5802/afst.1195. https://afst.centre-mersenne.org/articles/10.5802/afst.1195/
[1] Arraut (J. L.), Craizer (M.).— Foliations of defined by -actions. Ann. Inst. Fourier, Grenoble, 45, 4, p. 1091-1118 (1995). | Numdam | MR | Zbl
[2] Arraut (J. L.), Maquera (C. A.).— On the orbit structure of -actions on -manifolds. Qual. Theory Dyn. Syst., 4, no. 2, p. 169-180 (2003). | MR | Zbl
[3] Camacho (C.), Lins Neto (A.).— Geometric Theory of Foliations. Birkhäuser, Boston, Massachusetts, 1985. | MR | Zbl
[4] Camacho (C.), Scárdua (B. A.).— On codimension one foliations with Morse singularities on three-manifolds. Topology Appl., 154, p. 1032-1040 (2007). | MR | Zbl
[5] Cearveau (D.).— Distributions involutives singulières. Ann. Inst. Fourier, 29, no.3, 261-294 (1979). | Numdam | MR | Zbl
[6] Chatelet (G.), Rosenberg (H.), Weil (D.).— A classification of the topological types of -actions on closed orientable -manifolds. Publ. Math. IHES, 43, p. 261-272 (1974). | Numdam | MR | Zbl
[7] Haefliger (A.).— Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa, Série 3, 16, p. 367-397 (1962). | Numdam | MR | Zbl
[8] Katok (A.), Hasselblatt (B.).— Introduction to the modern theory of dynamical systems. Cambridge University Press, 1995. | MR | Zbl
[9] de Medeiros (A. S.).— Singular foliations, differential p-forms. Ann. Fac. Sci. Toulouse Math., (6) 9, no.3, p. 451-466 (2000). | Numdam | MR | Zbl
[10] Rosenberg (H.), Roussarie (R.), Weil (D.).— A classification of closed orientable manifolds of rank two. Ann. of Math., 91, p. 449-464 (1970). | MR | Zbl
[11] Sacksteder (R.).— Foliations, pseudogroups. Amer. J. Math., 87, p. 79-102 (1965). | MR | Zbl
[12] Scardua (B.), Seade (J.).— Codimension one foliations with Bott-Morse singularities I. Pre-print (2007). | Zbl
[13] Stefan (P.).— Accessible sets, orbits,, foliations with singularities. Proc. London Math. Soc., 29, p. 699-713 (1974). | MR | Zbl
[14] Sussmann (H. J.).— Orbits of families of vector fields, integrability of distributions. Trans. Amer. Math. Soc., 180, p. 171-188 (1973). | MR | Zbl
Cited by Sources: