Rees-Shishikura’s theorem plays an important role in the study of matings of polynomials. It promotes Thurston’s combinatorial equivalence into a semi-conjugacy. In this work we restate and reprove Rees-Shishikura’s theorem in a more general form, which can then be applied to a wider class of postcritically finite branched coverings. We provide an application of the restated theorem.
Le théorème de Rees-Shishikura joue un rôle important dans l’étude des accouplements de polynômes. Il permet d’obtenir une semi-conjugaison à partir d’une equivalence combinatoire de Thurston. Dans ce travail, nous reformulons et redémontrons ce théorème dans un cadre plus général. Cette nouvelle version du théorème est applicable à une classe plus large de revêtements ramifiés postcritiquement finis. Nous en fournissons un exemple à la fin de notre article.
Guizhen Cui 1; Wenjuan Peng 1; Lei Tan 2
@article{AFST_2012_6_21_S5_981_0, author = {Guizhen Cui and Wenjuan Peng and Lei Tan}, title = {On a theorem of {Rees-Shishikura}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {981--993}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {S5}, year = {2012}, doi = {10.5802/afst.1359}, mrnumber = {3088264}, zbl = {1283.37050}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1359/} }
TY - JOUR AU - Guizhen Cui AU - Wenjuan Peng AU - Lei Tan TI - On a theorem of Rees-Shishikura JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 981 EP - 993 VL - 21 IS - S5 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1359/ DO - 10.5802/afst.1359 LA - en ID - AFST_2012_6_21_S5_981_0 ER -
%0 Journal Article %A Guizhen Cui %A Wenjuan Peng %A Lei Tan %T On a theorem of Rees-Shishikura %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 981-993 %V 21 %N S5 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1359/ %R 10.5802/afst.1359 %G en %F AFST_2012_6_21_S5_981_0
Guizhen Cui; Wenjuan Peng; Lei Tan. On a theorem of Rees-Shishikura. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, pp. 981-993. doi : 10.5802/afst.1359. https://afst.centre-mersenne.org/articles/10.5802/afst.1359/
[1] Beardon (A. F.).— Iteration of rational functions, Graduate text in Mathemathics, vol. 132, Springer-Verlag, New York (1993). | MR | Zbl
[2] Blokh (A.) and Levin (G.).— An inequality for laminations, Julia sets and ’growing trees’, Erg. Th. and Dyn. Sys., 22, p. 63-97 (2002). | MR | Zbl
[3] Cui (G.), Peng (W.) and Tan (L.).— Renormalization and wandering continua of rational maps, arXiv: math/1105.2935.
[4] Douady (A.).— Systèmes dynamiques holomorphes, (Bourbaki seminar, Vol. 1982/83) Astérisque, p. 105-106, p. 39-63 (1983). | Numdam | MR | Zbl
[5] Douady (A.) and Hubbard (J. H.).— Étude dynamique des polynômes complexes, I, II, Publ. Math. Orsay (1984-1985). | Zbl
[6] Kiwi (J.).— Rational rays and critical portraits of complex polynomials, Preprint 1997/15, SUNY at Stony Brook and IMS. | MR
[7] Levin (G.).— On backward stability of holomorphic dynamical systems, Fund. Math., 158, p. 97-107 (1998). | MR | Zbl
[8] Petersen (C. L.) and Meyer (D.).— On the notions of mating, to appear in Annales de la Faculté des Sciences de Toulouse.
[9] Pilgrim (K.) and Tan (L.).— Rational maps with disconnected Julia set, Astérisque 261, volume spécial en l’honneur d’A. Douady, p. 349-384 (2000). | MR | Zbl
[10] Rees (M.).— A partial description of parameter space of rational maps of degree two: Part I, Acta Math., 168, p. 11-87 (1992). | MR | Zbl
[11] Shishikura (M.).— On a theorem of M. Rees for matings of polynomials, in The Mandelbrot set, Theme and Variations, ed. Tan Lei, LMS Lecture Note Series 274, Cambridge Univ. Press, p. 289-305 (2000). | MR | Zbl
[12] Tan (L.).— Matings of quadratic polynomials, Erg. Th. and Dyn. Sys., 12, p. 589-620 (1992). | MR | Zbl
[13] Thurston (W.).— The combinatorics of iterated rational maps (1985), published in: ”Complex dynamics: Families and Friends”, ed. by D. Schleicher, A K Peters, p. 1-108 (2008). | MR
Cited by Sources: