An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 4, pp. 755-778.

We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the interval [0,T] representing a chromosome. The originality is in the fact that some genotypes are missing. We give the asymptotic distribution of this LRT process under the null hypothesis that there is no QTL on [0,T] and under local alternatives with a QTL at t on [0,T]. We show that the LRT process is asymptotically the square of a “non-linear interpolated and normalized Gaussian process”. We have an easy formula in order to compute the supremum of the square of this interpolated process. We prove that the threshold is exactly the same as in the classical situation without missing genotypes.

Nous considérons le processus de test de rapport de vraisemblance (LRT) relatif au test d’absence de QTL (un QTL désigne un gène à effet quantitatif sur un trait) sur un intervalle [0,T] représentant un chromosome. L’originalité de cette étude vient du fait que certains génotypes s’avèrent manquants. Nous donnons la distribution asymptotique du processus de LRT, sous l’hypothèse nulle d’absence de QTL sur [0,T], et sous des alternatives locales où le QTL se situe en t sur [0,T]. Nous montrons que le processus de LRT est asymptotiquement le carré d’un “processus Gaussien d’interpolation non linéaire et renormalisé”. Nous présentons une formule simple permettant le calcul du maximum du carré du processus interpolé. Pour finir, nous prouvons que la valeur critique est exactement la même que dans la configuration classique sans génotypes manquants.

@article{AFST_2014_6_23_4_755_0,
     author = {Charles-Elie Rabier},
     title = {An asymptotic test for {Quantitative} {Trait} {Locus} detection in presence of missing genotypes},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {755--778},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 23},
     number = {4},
     year = {2014},
     doi = {10.5802/afst.1423},
     mrnumber = {3270422},
     zbl = {06374887},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1423/}
}
TY  - JOUR
AU  - Charles-Elie Rabier
TI  - An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2014
SP  - 755
EP  - 778
VL  - 23
IS  - 4
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1423/
DO  - 10.5802/afst.1423
LA  - en
ID  - AFST_2014_6_23_4_755_0
ER  - 
%0 Journal Article
%A Charles-Elie Rabier
%T An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2014
%P 755-778
%V 23
%N 4
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1423/
%R 10.5802/afst.1423
%G en
%F AFST_2014_6_23_4_755_0
Charles-Elie Rabier. An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 4, pp. 755-778. doi : 10.5802/afst.1423. https://afst.centre-mersenne.org/articles/10.5802/afst.1423/

[1] Arends (D.), Prins (P.), Broman (K.), Jansen (R.).— Tutorial Multiple QTL Mapping (MQM) Analysis, Technical Report (2010).

[2] Azaïs (J.M.), Cierco-Ayrolles (C.).— An asymptotic test for quantitative gene detection, Ann. Inst. Henri Poincaré (B), 38, 6, p. 1087-1092 (2002). | Numdam | MR | Zbl

[3] Azaïs (J.M.), Gassiat (E.), Mercadier (C.).— Asymptotic distribution and local power of the likelihood ratio test for mixtures, Bernoulli, 12(5), p. 775-799 (2006). | MR | Zbl

[4] Azaïs (J.M.), Gassiat (E.), Mercadier (C.).— The likelihood ratio test for general mixture models with possibly structural parameter, ESAIM, 13, p. 301-327 (2009). | Numdam | MR | Zbl

[5] Azaïs (J.M.), Wschebor (M.).— Level sets and extrema of random processes and fields, Wiley, New-York (2009). | MR | Zbl

[6] Azaïs (J.M.), Delmas (C.), Rabier (C-E.).— 2012. Likelihood Ratio Test process for QTL detection, Statistics, DOI:10.1080/02331888.2012.760093.

[7] Broman (K.).— Use of hidden Markov models for QTL mapping, Technical Report (2006).

[8] Chang (M. N.), Wu (R.), Wu (S. S.), Casella (G.).— Score statistics for mapping quantitative trait loci, Statistical Application in Genetics and Molecular Biology, 8(1), 16 (2009). | MR | Zbl

[9] Cierco (C.).— Asymptotic distribution of the maximum likelihood ratio test for gene detection, Statistics, 31, p. 261-285 (1998). | MR | Zbl

[10] Churchill (G.A.), Doerge (R.W.).— Empirical threshold values for quantitative trait mapping, Genetics, 138, p. 963-971 (1994).

[11] Darvasi (D.,) Soller (M.).— Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus, Theoretical and Applied Genetics, 85, p. 353-359 (1992).

[12] Davies (R.B.).— Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 64, p. 247-254 (1977). | MR | Zbl

[13] Davies (R.B.).— Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 74, p. 33-43 (1987). | MR | Zbl

[14] Feingold (E.), Brown (P.O.), Siegmund (D.).— Gaussian models for genetic linkage analysis using complete high-resolution maps of idendity by descent, Am. J. Human. Genet., 53, p. 234-251 (1993).

[15] Gassiat (E.).— Likelihood ratio inequalities with applications to various mixtures, Ann. Inst. Henri Poincaré (B), 6, p. 897-906 (2002). | Numdam | MR | Zbl

[16] Genz (A.).— Numerical computation of multivariate normal probabilities, J. Comp. Graph. Stat., p. 141-149 (1992). | Zbl

[17] Haldane (J.B.S.).— The combination of linkage values and the calculation of distance between the loci of linked factors, Journal of Genetics, 8, p. 299-309 (1919).

[18] Hayes (B.).— QTL Mapping, MAS, and Genomic Selection, Short course organized by Iowa State University (2007).

[19] Lander (E.S.), Botstein (D.).— Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 138, p. 235-240 (1989).

[20] Lebowitz (R.J.), Soller (M.), Beckmann (J.S.).— Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines, Theoretical and Applied Genetics, 73, p. 556-562 (1987).

[21] Muranty (H.), Goffinet (B.).— Selective genotyping for location and estimation of the effect of the effect of a quantitative trait locus, Biometrics, 53, p. 629-643 (1997). | Zbl

[22] Rabier (C.-E.).— On stochastic processes for Quantitative Trait Locus mapping under selective genotyping, Statistics, DOI:10.1080/02331888.2013.858720 (2013).

[23] Rabier (C.-E.).— On statistical inference for selective genotyping, Journal of Statistical Planning and Inference, 147, p. 24-52 (2014). | MR | Zbl

[24] Rebaï (A.), Goffinet (B.), Mangin (B.).— Approximate thresholds of interval mapping tests for QTL detection, Genetics, 138, p. 235-240 (1994).

[25] Rebaï (A.), Goffinet (B.), Mangin (B.).— Comparing power of different methods for QTL detection, Biometrics, 51, p. 87-99 (1995). | Zbl

[26] Siegmund (D.).— Sequential analysis: tests and confidence intervals, Springer, New York (1985). | MR | Zbl

[27] Siegmund (D.), Yakir (B.).— The statistics of gene mapping, Springer, New York (2007). | MR | Zbl

[28] Van der Vaart (A.W.).— Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics (1998). | MR | Zbl

[29] Wu (R.), MA (C.X.), Casella (G.).— Statistical Genetics of Quantitative Traits, Springer, New York (2007). | MR | Zbl

Cited by Sources: